Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Learning a sparse transformer network for effective image deraining
Transformers-based methods have achieved significant performance in image deraining as
they can model the non-local information which is vital for high-quality image reconstruction …
they can model the non-local information which is vital for high-quality image reconstruction …
Promptir: Prompting for all-in-one image restoration
Image restoration involves recovering a high-quality clean image from its degraded version.
Deep learning-based methods have significantly improved image restoration performance …
Deep learning-based methods have significantly improved image restoration performance …
Data-driven single image deraining: A comprehensive review and new perspectives
Abstract Single Image D eraining (SID) aims at recovering the rain-free background from an
image degraded by rain streaks. For the powerful fitting ability of deep neural networks and …
image degraded by rain streaks. For the powerful fitting ability of deep neural networks and …
Cross-level feature aggregation network for polyp segmentation
Accurate segmentation of polyps from colonoscopy images plays a critical role in the
diagnosis and cure of colorectal cancer. Although effectiveness has been achieved in the …
diagnosis and cure of colorectal cancer. Although effectiveness has been achieved in the …
Maxim: Multi-axis mlp for image processing
Recent progress on Transformers and multi-layer perceptron (MLP) models provide new
network architectural designs for computer vision tasks. Although these models proved to be …
network architectural designs for computer vision tasks. Although these models proved to be …
Restoring vision in adverse weather conditions with patch-based denoising diffusion models
Image restoration under adverse weather conditions has been of significant interest for
various computer vision applications. Recent successful methods rely on the current …
various computer vision applications. Recent successful methods rely on the current …
Restormer: Efficient transformer for high-resolution image restoration
Since convolutional neural networks (CNNs) perform well at learning generalizable image
priors from large-scale data, these models have been extensively applied to image …
priors from large-scale data, these models have been extensively applied to image …
All-in-one image restoration for unknown corruption
In this paper, we study a challenging problem in image restoration, namely, how to develop
an all-in-one method that could recover images from a variety of unknown corruption types …
an all-in-one method that could recover images from a variety of unknown corruption types …
Learning weather-general and weather-specific features for image restoration under multiple adverse weather conditions
Image restoration under multiple adverse weather conditions aims to remove weather-
related artifacts by using the single set of network parameters. In this paper, we find that …
related artifacts by using the single set of network parameters. In this paper, we find that …
Deep generalized unfolding networks for image restoration
Deep neural networks (DNN) have achieved great success in image restoration. However,
most DNN methods are designed as a black box, lacking transparency and interpretability …
most DNN methods are designed as a black box, lacking transparency and interpretability …