Dynamic mode decomposition and its variants
PJ Schmid - Annual Review of Fluid Mechanics, 2022 - annualreviews.org
Dynamic mode decomposition (DMD) is a factorization and dimensionality reduction
technique for data sequences. In its most common form, it processes high-dimensional …
technique for data sequences. In its most common form, it processes high-dimensional …
Modern Koopman theory for dynamical systems
The field of dynamical systems is being transformed by the mathematical tools and
algorithms emerging from modern computing and data science. First-principles derivations …
algorithms emerging from modern computing and data science. First-principles derivations …
Machine learning for molecular simulation
Machine learning (ML) is transforming all areas of science. The complex and time-
consuming calculations in molecular simulations are particularly suitable for an ML …
consuming calculations in molecular simulations are particularly suitable for an ML …
[KNIHA][B] Data-driven science and engineering: Machine learning, dynamical systems, and control
SL Brunton, JN Kutz - 2022 - books.google.com
Data-driven discovery is revolutionizing how we model, predict, and control complex
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …
Discovering causal relations and equations from data
Physics is a field of science that has traditionally used the scientific method to answer
questions about why natural phenomena occur and to make testable models that explain the …
questions about why natural phenomena occur and to make testable models that explain the …
Learning nonlinear reduced models from data with operator inference
This review discusses Operator Inference, a nonintrusive reduced modeling approach that
incorporates physical governing equations by defining a structured polynomial form for the …
incorporates physical governing equations by defining a structured polynomial form for the …
Deep learning for universal linear embeddings of nonlinear dynamics
Identifying coordinate transformations that make strongly nonlinear dynamics approximately
linear has the potential to enable nonlinear prediction, estimation, and control using linear …
linear has the potential to enable nonlinear prediction, estimation, and control using linear …
Modal analysis of fluid flows: Applications and outlook
THE field of fluid mechanics involves a range of rich and vibrant problems with complex
dynamics stemming from instabilities, nonlinearities, and turbulence. The analysis of these …
dynamics stemming from instabilities, nonlinearities, and turbulence. The analysis of these …
Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis
We consider the frequency domain form of proper orthogonal decomposition (POD), called
spectral proper orthogonal decomposition (SPOD). Spectral POD is derived from a space …
spectral proper orthogonal decomposition (SPOD). Spectral POD is derived from a space …
Physics-informed dynamic mode decomposition
In this work, we demonstrate how physical principles—such as symmetries, invariances and
conservation laws—can be integrated into the dynamic mode decomposition (DMD). DMD is …
conservation laws—can be integrated into the dynamic mode decomposition (DMD). DMD is …