Geometric deep learning on molecular representations

K Atz, F Grisoni, G Schneider - Nature Machine Intelligence, 2021 - nature.com
Geometric deep learning (GDL) is based on neural network architectures that incorporate
and process symmetry information. GDL bears promise for molecular modelling applications …

Machine learning on neutron and x-ray scattering and spectroscopies

Z Chen, N Andrejevic, NC Drucker, T Nguyen… - Chemical Physics …, 2021 - pubs.aip.org
Neutron and x-ray scattering represent two classes of state-of-the-art materials
characterization techniques that measure materials structural and dynamical properties with …

Equiformer: Equivariant graph attention transformer for 3d atomistic graphs

YL Liao, T Smidt - arxiv preprint arxiv:2206.11990, 2022 - arxiv.org
Despite their widespread success in various domains, Transformer networks have yet to
perform well across datasets in the domain of 3D atomistic graphs such as molecules even …

E (3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials

S Batzner, A Musaelian, L Sun, M Geiger… - Nature …, 2022 - nature.com
Abstract This work presents Neural Equivariant Interatomic Potentials (NequIP), an E (3)-
equivariant neural network approach for learning interatomic potentials from ab-initio …

e3nn: Euclidean neural networks

M Geiger, T Smidt - arxiv preprint arxiv:2207.09453, 2022 - arxiv.org
We present e3nn, a generalized framework for creating E (3) equivariant trainable functions,
also known as Euclidean neural networks. e3nn naturally operates on geometry and …

Artificial intelligence for science in quantum, atomistic, and continuum systems

X Zhang, L Wang, J Helwig, Y Luo, C Fu, Y **e… - arxiv preprint arxiv …, 2023 - arxiv.org
Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural
sciences. Today, AI has started to advance natural sciences by improving, accelerating, and …

Equivariance with learned canonicalization functions

SO Kaba, AK Mondal, Y Zhang… - International …, 2023 - proceedings.mlr.press
Symmetry-based neural networks often constrain the architecture in order to achieve
invariance or equivariance to a group of transformations. In this paper, we propose an …

Geometric clifford algebra networks

D Ruhe, JK Gupta, S De Keninck… - International …, 2023 - proceedings.mlr.press
Abstract We propose Geometric Clifford Algebra Networks (GCANs) for modeling dynamical
systems. GCANs are based on symmetry group transformations using geometric (Clifford) …

Self-consistent determination of long-range electrostatics in neural network potentials

A Gao, RC Remsing - Nature communications, 2022 - nature.com
Abstract Machine learning has the potential to revolutionize the field of molecular simulation
through the development of efficient and accurate models of interatomic interactions. Neural …

DeepRank: a deep learning framework for data mining 3D protein-protein interfaces

N Renaud, C Geng, S Georgievska… - Nature …, 2021 - nature.com
Abstract Three-dimensional (3D) structures of protein complexes provide fundamental
information to decipher biological processes at the molecular scale. The vast amount of …