[HTML][HTML] Internet of things: Security and solutions survey

PK Sadhu, VP Yanambaka, A Abdelgawad - Sensors, 2022 - mdpi.com
The overwhelming acceptance and growing need for Internet of Things (IoT) products in
each aspect of everyday living is creating a promising prospect for the involvement of …

[HTML][HTML] A survey on industrial Internet of Things security: Requirements, attacks, AI-based solutions, and edge computing opportunities

B Alotaibi - Sensors, 2023 - mdpi.com
The Industrial Internet of Things (IIoT) paradigm is a key research area derived from the
Internet of Things (IoT). The emergence of IIoT has enabled a revolution in manufacturing …

[HTML][HTML] DCNNBiLSTM: An efficient hybrid deep learning-based intrusion detection system

V Hnamte, J Hussain - Telematics and Informatics Reports, 2023 - Elsevier
In recent years, all real-world processes have been shifted to the cyber environment
practically, and computers communicate with one another over the Internet. As a result, there …

Federated deep learning for zero-day botnet attack detection in IoT-edge devices

SI Popoola, R Ande, B Adebisi, G Gui… - IEEE Internet of …, 2021 - ieeexplore.ieee.org
Deep learning (DL) has been widely proposed for botnet attack detection in Internet of
Things (IoT) networks. However, the traditional centralized DL (CDL) method cannot be …

[HTML][HTML] Deep learning-based intrusion detection for distributed denial of service attack in agriculture 4.0

MA Ferrag, L Shu, H Djallel, KKR Choo - Electronics, 2021 - mdpi.com
Smart Agriculture or Agricultural Internet of things, consists of integrating advanced
technologies (eg, NFV, SDN, 5G/6G, Blockchain, IoT, Fog, Edge, and AI) into existing farm …

Cyber security for detecting distributed denial of service attacks in agriculture 4.0: Deep learning model

THH Aldhyani, H Alkahtani - Mathematics, 2023 - mdpi.com
Attackers are increasingly targeting Internet of Things (IoT) networks, which connect
industrial devices to the Internet. To construct network intrusion detection systems (NIDSs) …

Optimizing IoT intrusion detection system: feature selection versus feature extraction in machine learning

J Li, MS Othman, H Chen, LM Yusuf - Journal of Big Data, 2024 - Springer
Abstract Internet of Things (IoT) devices are widely used but also vulnerable to cyberattacks
that can cause security issues. To protect against this, machine learning approaches have …

A novel intrusion detection method based on lightweight neural network for internet of things

R Zhao, G Gui, Z Xue, J Yin, T Ohtsuki… - IEEE Internet of …, 2021 - ieeexplore.ieee.org
The purpose of a network intrusion detection (NID) is to detect intrusions in the network,
which plays a critical role in ensuring the security of the Internet of Things (IoT). Recently …

Semi-supervised specific emitter identification method using metric-adversarial training

X Fu, Y Peng, Y Liu, Y Lin, G Gui… - IEEE Internet of …, 2023 - ieeexplore.ieee.org
Specific emitter identification (SEI) plays an increasingly crucial and potential role in both
military and civilian scenarios. It refers to a process to discriminate individual emitters from …

[HTML][HTML] A deep learning methodology for predicting cybersecurity attacks on the internet of things

OA Alkhudaydi, M Krichen, AD Alghamdi - Information, 2023 - mdpi.com
With the increasing severity and frequency of cyberattacks, the rapid expansion of smart
objects intensifies cybersecurity threats. The vast communication traffic data between …