A comprehensive survey on trustworthy graph neural networks: Privacy, robustness, fairness, and explainability
Graph neural networks (GNNs) have made rapid developments in the recent years. Due to
their great ability in modeling graph-structured data, GNNs are vastly used in various …
their great ability in modeling graph-structured data, GNNs are vastly used in various …
From distributed machine learning to federated learning: A survey
In recent years, data and computing resources are typically distributed in the devices of end
users, various regions or organizations. Because of laws or regulations, the distributed data …
users, various regions or organizations. Because of laws or regulations, the distributed data …
Federated learning on non-iid graphs via structural knowledge sharing
Graph neural networks (GNNs) have shown their superiority in modeling graph data. Owing
to the advantages of federated learning, federated graph learning (FGL) enables clients to …
to the advantages of federated learning, federated graph learning (FGL) enables clients to …
Graph-based deep learning for medical diagnosis and analysis: past, present and future
With the advances of data-driven machine learning research, a wide variety of prediction
problems have been tackled. It has become critical to explore how machine learning and …
problems have been tackled. It has become critical to explore how machine learning and …
Federated graph classification over non-iid graphs
Federated learning has emerged as an important paradigm for training machine learning
models in different domains. For graph-level tasks such as graph classification, graphs can …
models in different domains. For graph-level tasks such as graph classification, graphs can …
Fedgraphnn: A federated learning system and benchmark for graph neural networks
Graph Neural Network (GNN) research is rapidly growing thanks to the capacity of GNNs in
learning distributed representations from graph-structured data. However, centralizing a …
learning distributed representations from graph-structured data. However, centralizing a …
Heterogeneous graph masked autoencoders
Generative self-supervised learning (SSL), especially masked autoencoders, has become
one of the most exciting learning paradigms and has shown great potential in handling …
one of the most exciting learning paradigms and has shown great potential in handling …
Trustworthy graph neural networks: Aspects, methods and trends
Graph neural networks (GNNs) have emerged as a series of competent graph learning
methods for diverse real-world scenarios, ranging from daily applications like …
methods for diverse real-world scenarios, ranging from daily applications like …
Federated large language model: A position paper
Large scale language models (LLM) have received significant attention and found diverse
applications across various domains, but their development encounters challenges in real …
applications across various domains, but their development encounters challenges in real …
Federated graph neural networks: Overview, techniques, and challenges
Graph neural networks (GNNs) have attracted extensive research attention in recent years
due to their capability to progress with graph data and have been widely used in practical …
due to their capability to progress with graph data and have been widely used in practical …