A survey on deep learning in medical image analysis

G Litjens, T Kooi, BE Bejnordi, AAA Setio, F Ciompi… - Medical image …, 2017 - Elsevier
Deep learning algorithms, in particular convolutional networks, have rapidly become a
methodology of choice for analyzing medical images. This paper reviews the major deep …

Deep learning in medical image analysis

D Shen, G Wu, HI Suk - Annual review of biomedical …, 2017 - annualreviews.org
This review covers computer-assisted analysis of images in the field of medical imaging.
Recent advances in machine learning, especially with regard to deep learning, are hel** …

Recent advances and clinical applications of deep learning in medical image analysis

X Chen, X Wang, K Zhang, KM Fung, TC Thai… - Medical image …, 2022 - Elsevier
Deep learning has received extensive research interest in develo** new medical image
processing algorithms, and deep learning based models have been remarkably successful …

Deep learning applications in medical image analysis

J Ker, L Wang, J Rao, T Lim - Ieee Access, 2017 - ieeexplore.ieee.org
The tremendous success of machine learning algorithms at image recognition tasks in
recent years intersects with a time of dramatically increased use of electronic medical …

Brain tumor classification for MR images using transfer learning and fine-tuning

ZNK Swati, Q Zhao, M Kabir, F Ali, Z Ali… - … Medical Imaging and …, 2019 - Elsevier
Accurate and precise brain tumor MR images classification plays important role in clinical
diagnosis and decision making for patient treatment. The key challenge in MR images …

[HTML][HTML] Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results

X Li, Y Gu, N Dvornek, LH Staib, P Ventola… - Medical image …, 2020 - Elsevier
Deep learning models have shown their advantage in many different tasks, including
neuroimage analysis. However, to effectively train a high-quality deep learning model, the …

Machine learning techniques for the diagnosis of Alzheimer's disease: A review

M Tanveer, B Richhariya, RU Khan… - ACM Transactions on …, 2020 - dl.acm.org
Alzheimer's disease is an incurable neurodegenerative disease primarily affecting the
elderly population. Efficient automated techniques are needed for early diagnosis of …

[HTML][HTML] Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications

S Vieira, WHL Pinaya, A Mechelli - Neuroscience & Biobehavioral Reviews, 2017 - Elsevier
Deep learning (DL) is a family of machine learning methods that has gained considerable
attention in the scientific community, breaking benchmark records in areas such as speech …

Deep learning to detect Alzheimer's disease from neuroimaging: A systematic literature review

MA Ebrahimighahnavieh, S Luo, R Chiong - Computer methods and …, 2020 - Elsevier
Alzheimer's Disease (AD) is one of the leading causes of death in developed countries.
From a research point of view, impressive results have been reported using computer-aided …

Deep learning based brain tumor segmentation: a survey

Z Liu, L Tong, L Chen, Z Jiang, F Zhou, Q Zhang… - Complex & intelligent …, 2023 - Springer
Brain tumor segmentation is one of the most challenging problems in medical image
analysis. The goal of brain tumor segmentation is to generate accurate delineation of brain …