Chatting about ChatGPT: how may AI and GPT impact academia and libraries?
Purpose This paper aims to provide an overview of key definitions related to ChatGPT, a
public tool developed by OpenAI, and its underlying technology, Generative Pretrained …
public tool developed by OpenAI, and its underlying technology, Generative Pretrained …
[HTML][HTML] A survey of GPT-3 family large language models including ChatGPT and GPT-4
KS Kalyan - Natural Language Processing Journal, 2024 - Elsevier
Large language models (LLMs) are a special class of pretrained language models (PLMs)
obtained by scaling model size, pretraining corpus and computation. LLMs, because of their …
obtained by scaling model size, pretraining corpus and computation. LLMs, because of their …
Scaling vision transformers to 22 billion parameters
The scaling of Transformers has driven breakthrough capabilities for language models. At
present, the largest large language models (LLMs) contain upwards of 100B parameters …
present, the largest large language models (LLMs) contain upwards of 100B parameters …
Machine learning methods for small data challenges in molecular science
Small data are often used in scientific and engineering research due to the presence of
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …
[HTML][HTML] A comparison review of transfer learning and self-supervised learning: Definitions, applications, advantages and limitations
Deep learning has emerged as a powerful tool in various domains, revolutionising machine
learning research. However, one persistent challenge is the scarcity of labelled training …
learning research. However, one persistent challenge is the scarcity of labelled training …
A comprehensive survey on test-time adaptation under distribution shifts
Abstract Machine learning methods strive to acquire a robust model during the training
process that can effectively generalize to test samples, even in the presence of distribution …
process that can effectively generalize to test samples, even in the presence of distribution …
Integrated image-based deep learning and language models for primary diabetes care
Primary diabetes care and diabetic retinopathy (DR) screening persist as major public
health challenges due to a shortage of trained primary care physicians (PCPs), particularly …
health challenges due to a shortage of trained primary care physicians (PCPs), particularly …
A survey on deep neural network pruning: Taxonomy, comparison, analysis, and recommendations
Modern deep neural networks, particularly recent large language models, come with
massive model sizes that require significant computational and storage resources. To …
massive model sizes that require significant computational and storage resources. To …
Transfer learning for medical image classification: a literature review
HE Kim, A Cosa-Linan, N Santhanam, M Jannesari… - BMC medical …, 2022 - Springer
Background Transfer learning (TL) with convolutional neural networks aims to improve
performances on a new task by leveraging the knowledge of similar tasks learned in …
performances on a new task by leveraging the knowledge of similar tasks learned in …
Non-stationary transformers: Exploring the stationarity in time series forecasting
Transformers have shown great power in time series forecasting due to their global-range
modeling ability. However, their performance can degenerate terribly on non-stationary real …
modeling ability. However, their performance can degenerate terribly on non-stationary real …