Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A survey of graph neural networks for social recommender systems
Social recommender systems (SocialRS) simultaneously leverage the user-to-item
interactions as well as the user-to-user social relations for the task of generating item …
interactions as well as the user-to-user social relations for the task of generating item …
Application of machine learning in wireless networks: Key techniques and open issues
As a key technique for enabling artificial intelligence, machine learning (ML) is capable of
solving complex problems without explicit programming. Motivated by its successful …
solving complex problems without explicit programming. Motivated by its successful …
Automatic prompt optimization with" gradient descent" and beam search
Large Language Models (LLMs) have shown impressive performance as general purpose
agents, but their abilities remain highly dependent on prompts which are hand written with …
agents, but their abilities remain highly dependent on prompts which are hand written with …
User-friendly introduction to PAC-Bayes bounds
P Alquier - Foundations and Trends® in Machine Learning, 2024 - nowpublishers.com
Aggregated predictors are obtained by making a set of basic predictors vote according to
some weights, that is, to some probability distribution. Randomized predictors are obtained …
some weights, that is, to some probability distribution. Randomized predictors are obtained …
Provably efficient reinforcement learning with linear function approximation
Abstract Modern Reinforcement Learning (RL) is commonly applied to practical problems
with an enormous number of states, where\emph {function approximation} must be deployed …
with an enormous number of states, where\emph {function approximation} must be deployed …
[LIBRO][B] Control systems and reinforcement learning
S Meyn - 2022 - books.google.com
A high school student can create deep Q-learning code to control her robot, without any
understanding of the meaning of'deep'or'Q', or why the code sometimes fails. This book is …
understanding of the meaning of'deep'or'Q', or why the code sometimes fails. This book is …
Neural thompson sampling
Thompson Sampling (TS) is one of the most effective algorithms for solving contextual multi-
armed bandit problems. In this paper, we propose a new algorithm, called Neural Thompson …
armed bandit problems. In this paper, we propose a new algorithm, called Neural Thompson …
Is Q-learning provably efficient?
Abstract Model-free reinforcement learning (RL) algorithms directly parameterize and
update value functions or policies, bypassing the modeling of the environment. They are …
update value functions or policies, bypassing the modeling of the environment. They are …
[LIBRO][B] Bandit algorithms
T Lattimore, C Szepesvári - 2020 - books.google.com
Decision-making in the face of uncertainty is a significant challenge in machine learning,
and the multi-armed bandit model is a commonly used framework to address it. This …
and the multi-armed bandit model is a commonly used framework to address it. This …
Multi-armed bandit-based client scheduling for federated learning
By exploiting the computing power and local data of distributed clients, federated learning
(FL) features ubiquitous properties such as reduction of communication overhead and …
(FL) features ubiquitous properties such as reduction of communication overhead and …