A comprehensive survey on deep graph representation learning

W Ju, Z Fang, Y Gu, Z Liu, Q Long, Z Qiao, Y Qin… - Neural Networks, 2024 - Elsevier
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …

A comprehensive taxonomy for explainable artificial intelligence: a systematic survey of surveys on methods and concepts

G Schwalbe, B Finzel - Data Mining and Knowledge Discovery, 2024 - Springer
In the meantime, a wide variety of terminologies, motivations, approaches, and evaluation
criteria have been developed within the research field of explainable artificial intelligence …

Towards automated circuit discovery for mechanistic interpretability

A Conmy, A Mavor-Parker, A Lynch… - Advances in …, 2023 - proceedings.neurips.cc
Through considerable effort and intuition, several recent works have reverse-engineered
nontrivial behaviors oftransformer models. This paper systematizes the mechanistic …

[HTML][HTML] Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities

W Saeed, C Omlin - Knowledge-Based Systems, 2023 - Elsevier
The past decade has seen significant progress in artificial intelligence (AI), which has
resulted in algorithms being adopted for resolving a variety of problems. However, this …

Language in a bottle: Language model guided concept bottlenecks for interpretable image classification

Y Yang, A Panagopoulou, S Zhou… - Proceedings of the …, 2023 - openaccess.thecvf.com
Abstract Concept Bottleneck Models (CBM) are inherently interpretable models that factor
model decisions into human-readable concepts. They allow people to easily understand …

Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics

GS Gulati, JP D'Silva, Y Liu, L Wang… - … Reviews Molecular Cell …, 2024 - nature.com
Single-cell transcriptomics has broadened our understanding of cellular diversity and gene
expression dynamics in healthy and diseased tissues. Recently, spatial transcriptomics has …

[HTML][HTML] A survey of multimodal information fusion for smart healthcare: Map** the journey from data to wisdom

T Shaik, X Tao, L Li, H **e, JD Velásquez - Information Fusion, 2024 - Elsevier
Multimodal medical data fusion has emerged as a transformative approach in smart
healthcare, enabling a comprehensive understanding of patient health and personalized …

[HTML][HTML] Review of the application of Artificial Neural Networks in ocean engineering

NP Juan, VN Valdecantos - Ocean Engineering, 2022 - Elsevier
Abstract Artificial Neural Networks (ANNs) were firstly used to model ocean engineering
problems in the decade of 1990s. Since then, this soft-modelling technique has proved …

Explainability of artificial intelligence methods, applications and challenges: A comprehensive survey

W Ding, M Abdel-Basset, H Hawash, AM Ali - Information Sciences, 2022 - Elsevier
The continuous advancement of Artificial Intelligence (AI) has been revolutionizing the
strategy of decision-making in different life domains. Regardless of this achievement, AI …

Stylediffusion: Controllable disentangled style transfer via diffusion models

Z Wang, L Zhao, W **ng - Proceedings of the IEEE/CVF …, 2023 - openaccess.thecvf.com
Content and style (CS) disentanglement is a fundamental problem and critical challenge of
style transfer. Existing approaches based on explicit definitions (eg, Gram matrix) or implicit …