Artificial intelligence for remote sensing data analysis: A review of challenges and opportunities

L Zhang, L Zhang - IEEE Geoscience and Remote Sensing …, 2022 - ieeexplore.ieee.org
Artificial intelligence (AI) plays a growing role in remote sensing (RS). Applications of AI,
particularly machine learning algorithms, range from initial image processing to high-level …

Hyperspectral image denoising: From model-driven, data-driven, to model-data-driven

Q Zhang, Y Zheng, Q Yuan, M Song… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Mixed noise pollution in HSI severely disturbs subsequent interpretations and applications.
In this technical review, we first give the noise analysis in different noisy HSIs and conclude …

SpectralFormer: Rethinking hyperspectral image classification with transformers

D Hong, Z Han, J Yao, L Gao, B Zhang… - … on Geoscience and …, 2021 - ieeexplore.ieee.org
Hyperspectral (HS) images are characterized by approximately contiguous spectral
information, enabling the fine identification of materials by capturing subtle spectral …

Two-branch attention adversarial domain adaptation network for hyperspectral image classification

Y Huang, J Peng, W Sun, N Chen, Q Du… - … on Geoscience and …, 2022 - ieeexplore.ieee.org
Recent studies have shown that deep domain adaptation (DA) techniques have good
performance on cross-domain hyperspectral image (HSI) classification problems. However …

Rotation-invariant attention network for hyperspectral image classification

X Zheng, H Sun, X Lu, W ** on hyperspectral remote sensing images using adversarial domain adaptation network
Y Huang, J Peng, N Chen, W Sun, Q Du, K Ren… - ISPRS Journal of …, 2023 - Elsevier
Wetlands are one of the most important ecosystems on the Earth, and using hyperspectral
remote sensing (RS) technology for fine wetland map** is important for restoring and …

Category-specific prototype self-refinement contrastive learning for few-shot hyperspectral image classification

Q Liu, J Peng, N Chen, W Sun… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Deep learning (DL) has been extensively used for hyperspectral image classification (HSIC)
with significant success, but the classification of high-dimensional hyperspectral image (HSI) …

A fast and compact 3-D CNN for hyperspectral image classification

M Ahmad, AM Khan, M Mazzara… - … and Remote Sensing …, 2020 - ieeexplore.ieee.org
Hyperspectral images (HSIs) are used in a large number of real-world applications. HSI
classification (HSIC) is a challenging task due to high interclass similarity, high intraclass …

Hyperspectral anomaly detection with robust graph autoencoders

G Fan, Y Ma, X Mei, F Fan, J Huang… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Anomaly detection of hyperspectral data has been gaining particular attention for its ability in
detecting targets in an unsupervised manner. Autoencoder (AE), together with its variants …

Abundance matrix correlation analysis network based on hierarchical multihead self-cross-hybrid attention for hyperspectral change detection

W Dong, J Zhao, J Qu, S **ao, N Li… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Hyperspectral image (HSI) change detection is a technique for detecting the changes
between the multitemporal HSIs of the same scene. Many existing change detection …