Wurtzite and fluorite ferroelectric materials for electronic memory

KH Kim, I Karpov, RH Olsson III, D Jariwala - Nature Nanotechnology, 2023 - nature.com
Ferroelectric materials, the charge equivalent of magnets, have been the subject of
continued research interest since their discovery more than 100 years ago. The …

Artificial neuron devices

K He, C Wang, Y He, J Su, X Chen - Chemical Reviews, 2023 - ACS Publications
Efforts to design devices emulating complex cognitive abilities and response processes of
biological systems have long been a coveted goal. Recent advancements in flexible …

Thousands of conductance levels in memristors integrated on CMOS

M Rao, H Tang, J Wu, W Song, M Zhang, W Yin… - Nature, 2023 - nature.com
Neural networks based on memristive devices,–have the ability to improve throughput and
energy efficiency for machine learning, and artificial intelligence, especially in edge …

Edge learning using a fully integrated neuro-inspired memristor chip

W Zhang, P Yao, B Gao, Q Liu, D Wu, Q Zhang, Y Li… - Science, 2023 - science.org
Learning is highly important for edge intelligence devices to adapt to different application
scenes and owners. Current technologies for training neural networks require moving …

A compute-in-memory chip based on resistive random-access memory

W Wan, R Kubendran, C Schaefer, SB Eryilmaz… - Nature, 2022 - nature.com
Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge
devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory …

Porous crystalline materials for memories and neuromorphic computing systems

G Ding, JY Zhao, K Zhou, Q Zheng, ST Han… - Chemical Society …, 2023 - pubs.rsc.org
Porous crystalline materials usually include metal–organic frameworks (MOFs), covalent
organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and zeolites …

Memristive technologies for data storage, computation, encryption, and radio-frequency communication

M Lanza, A Sebastian, WD Lu, M Le Gallo, MF Chang… - Science, 2022 - science.org
Memristive devices, which combine a resistor with memory functions such that voltage
pulses can change their resistance (and hence their memory state) in a nonvolatile manner …

Ultra-fast switching memristors based on two-dimensional materials

SS Teja Nibhanupudi, A Roy, D Veksler… - Nature …, 2024 - nature.com
The ability to scale two-dimensional (2D) material thickness down to a single monolayer
presents a promising opportunity to realize high-speed energy-efficient memristors. Here …

Organic mixed conductors for bioinspired electronics

P Gkoupidenis, Y Zhang, H Kleemann, H Ling… - Nature Reviews …, 2024 - nature.com
Owing to its close resemblance to biological systems and materials, soft matter has been
successfully implemented in numerous bioelectronic and biosensing applications, as well as …

A crossbar array of magnetoresistive memory devices for in-memory computing

S Jung, H Lee, S Myung, H Kim, SK Yoon, SW Kwon… - Nature, 2022 - nature.com
Implementations of artificial neural networks that borrow analogue techniques could
potentially offer low-power alternatives to fully digital approaches,–. One notable example is …