Graph neural networks for materials science and chemistry
Abstract Machine learning plays an increasingly important role in many areas of chemistry
and materials science, being used to predict materials properties, accelerate simulations …
and materials science, being used to predict materials properties, accelerate simulations …
Geometric deep learning on molecular representations
Geometric deep learning (GDL) is based on neural network architectures that incorporate
and process symmetry information. GDL bears promise for molecular modelling applications …
and process symmetry information. GDL bears promise for molecular modelling applications …
CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling
Large-scale simulations with complex electron interactions remain one of the greatest
challenges for atomistic modelling. Although classical force fields often fail to describe the …
challenges for atomistic modelling. Although classical force fields often fail to describe the …
E (3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
Abstract This work presents Neural Equivariant Interatomic Potentials (NequIP), an E (3)-
equivariant neural network approach for learning interatomic potentials from ab-initio …
equivariant neural network approach for learning interatomic potentials from ab-initio …
Accurate global machine learning force fields for molecules with hundreds of atoms
Global machine learning force fields, with the capacity to capture collective interactions in
molecular systems, now scale up to a few dozen atoms due to considerable growth of model …
molecular systems, now scale up to a few dozen atoms due to considerable growth of model …
Structure-based drug design with geometric deep learning
Abstract Structure-based drug design uses three-dimensional geometric information of
macromolecules, such as proteins or nucleic acids, to identify suitable ligands. Geometric …
macromolecules, such as proteins or nucleic acids, to identify suitable ligands. Geometric …
Forces are not enough: Benchmark and critical evaluation for machine learning force fields with molecular simulations
Molecular dynamics (MD) simulation techniques are widely used for various natural science
applications. Increasingly, machine learning (ML) force field (FF) models begin to replace ab …
applications. Increasingly, machine learning (ML) force field (FF) models begin to replace ab …
Neural network potentials: A concise overview of methods
In the past two decades, machine learning potentials (MLPs) have reached a level of
maturity that now enables applications to large-scale atomistic simulations of a wide range …
maturity that now enables applications to large-scale atomistic simulations of a wide range …
A Euclidean transformer for fast and stable machine learned force fields
Recent years have seen vast progress in the development of machine learned force fields
(MLFFs) based on ab-initio reference calculations. Despite achieving low test errors, the …
(MLFFs) based on ab-initio reference calculations. Despite achieving low test errors, the …
Machine learning interatomic potentials and long-range physics
Advances in machine learned interatomic potentials (MLIPs), such as those using neural
networks, have resulted in short-range models that can infer interaction energies with near …
networks, have resulted in short-range models that can infer interaction energies with near …