[PDF][PDF] A survey of predictive maintenance: Systems, purposes and approaches

Y Ran, X Zhou, P Lin, Y Wen… - arxiv preprint arxiv …, 2019 - researchgate.net
This paper provides a comprehensive literature review on Predictive Maintenance (PdM)
with emphasis on system architectures, purposes and approaches. In industry, any outages …

A comprehensive review on convolutional neural network in machine fault diagnosis

J Jiao, M Zhao, J Lin, K Liang - Neurocomputing, 2020 - Elsevier
With the rapid development of manufacturing industry, machine fault diagnosis has become
increasingly significant to ensure safe equipment operation and production. Consequently …

Bearing fault diagnosis based on vibro-acoustic data fusion and 1D-CNN network

X Wang, D Mao, X Li - Measurement, 2021 - Elsevier
Bearing fault diagnosis is an important part of rotating machinery maintenance. Existing
diagnosis methods based on single-modal signals not only have unsatisfactory accuracy …

Intelligent fault diagnosis of rotating machinery based on continuous wavelet transform-local binary convolutional neural network

Y Cheng, M Lin, J Wu, H Zhu, X Shao - Knowledge-Based Systems, 2021 - Elsevier
This paper presents a data-driven intelligent fault diagnosis approach for rotating machinery
(RM) based on a novel continuous wavelet transform-local binary convolutional neural …

Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization

S Tang, Y Zhu, S Yuan - ISA transactions, 2022 - Elsevier
Hydraulic axial piston pump is broadly-used in aerospace, ocean engineering and
construction machinery since it is the vital component of fluid power systems. In the light of …

Deep learning for smart manufacturing: Methods and applications

J Wang, Y Ma, L Zhang, RX Gao, D Wu - Journal of manufacturing systems, 2018 - Elsevier
Smart manufacturing refers to using advanced data analytics to complement physical
science for improving system performance and decision making. With the widespread …

A review on the application of deep learning in system health management

S Khan, T Yairi - Mechanical Systems and Signal Processing, 2018 - Elsevier
Given the advancements in modern technological capabilities, having an integrated health
management and diagnostic strategy becomes an important part of a system's operational …

Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox

G Jiang, H He, J Yan, P **e - IEEE Transactions on Industrial …, 2018 - ieeexplore.ieee.org
This paper proposes a novel intelligent fault diagnosis method to automatically identify
different health conditions of wind turbine (WT) gearbox. Unlike traditional approaches …

Planetary gearbox fault diagnosis using bidirectional-convolutional LSTM networks

J Shi, D Peng, Z Peng, Z Zhang, K Goebel… - Mechanical Systems and …, 2022 - Elsevier
Gearbox fault diagnosis is expected to significantly improve the reliability, safety and
efficiency of power transmission systems. However, planetary gearbox fault diagnosis …

Understanding and learning discriminant features based on multiattention 1DCNN for wheelset bearing fault diagnosis

H Wang, Z Liu, D Peng, Y Qin - IEEE Transactions on Industrial …, 2019 - ieeexplore.ieee.org
Recently, deep-learning-based fault diagnosis methods have been widely studied for rolling
bearings. However, these neural networks are lack of interpretability for fault diagnosis …