Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Recommender systems in the era of large language models (llms)
With the prosperity of e-commerce and web applications, Recommender Systems (RecSys)
have become an indispensable and important component, providing personalized …
have become an indispensable and important component, providing personalized …
Self-supervised learning of graph neural networks: A unified review
Deep models trained in supervised mode have achieved remarkable success on a variety of
tasks. When labeled samples are limited, self-supervised learning (SSL) is emerging as a …
tasks. When labeled samples are limited, self-supervised learning (SSL) is emerging as a …
Exploring the potential of large language models (llms) in learning on graphs
Learning on Graphs has attracted immense attention due to its wide real-world applications.
The most popular pipeline for learning on graphs with textual node attributes primarily relies …
The most popular pipeline for learning on graphs with textual node attributes primarily relies …
Long range graph benchmark
Abstract Graph Neural Networks (GNNs) that are based on the message passing (MP)
paradigm generally exchange information between 1-hop neighbors to build node …
paradigm generally exchange information between 1-hop neighbors to build node …
Explainability in graph neural networks: A taxonomic survey
Deep learning methods are achieving ever-increasing performance on many artificial
intelligence tasks. A major limitation of deep models is that they are not amenable to …
intelligence tasks. A major limitation of deep models is that they are not amenable to …
Demystifying structural disparity in graph neural networks: Can one size fit all?
Abstract Recent studies on Graph Neural Networks (GNNs) provide both empirical and
theoretical evidence supporting their effectiveness in capturing structural patterns on both …
theoretical evidence supporting their effectiveness in capturing structural patterns on both …
Trustworthy graph neural networks: Aspects, methods, and trends
Graph neural networks (GNNs) have emerged as a series of competent graph learning
methods for diverse real-world scenarios, ranging from daily applications such as …
methods for diverse real-world scenarios, ranging from daily applications such as …
A survey on graph representation learning methods
Graph representation learning has been a very active research area in recent years. The
goal of graph representation learning is to generate graph representation vectors that …
goal of graph representation learning is to generate graph representation vectors that …
Gnnautoscale: Scalable and expressive graph neural networks via historical embeddings
We present GNNAutoScale (GAS), a framework for scaling arbitrary message-passing GNNs
to large graphs. GAS prunes entire sub-trees of the computation graph by utilizing historical …
to large graphs. GAS prunes entire sub-trees of the computation graph by utilizing historical …
Node similarity preserving graph convolutional networks
Graph Neural Networks (GNNs) have achieved tremendous success in various real-world
applications due to their strong ability in graph representation learning. GNNs explore the …
applications due to their strong ability in graph representation learning. GNNs explore the …