[HTML][HTML] A survey of transformers

T Lin, Y Wang, X Liu, X Qiu - AI open, 2022 - Elsevier
Transformers have achieved great success in many artificial intelligence fields, such as
natural language processing, computer vision, and audio processing. Therefore, it is natural …

[HTML][HTML] A review of green artificial intelligence: Towards a more sustainable future

V Bolón-Canedo, L Morán-Fernández, B Cancela… - Neurocomputing, 2024 - Elsevier
Green artificial intelligence (AI) is more environmentally friendly and inclusive than
conventional AI, as it not only produces accurate results without increasing the …

Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting

T Zhou, Z Ma, Q Wen, X Wang… - … on machine learning, 2022 - proceedings.mlr.press
Long-term time series forecasting is challenging since prediction accuracy tends to
decrease dramatically with the increasing horizon. Although Transformer-based methods …

Efficient large language models: A survey

Z Wan, X Wang, C Liu, S Alam, Y Zheng, J Liu… - arxiv preprint arxiv …, 2023 - arxiv.org
Large Language Models (LLMs) have demonstrated remarkable capabilities in important
tasks such as natural language understanding and language generation, and thus have the …

Cswin transformer: A general vision transformer backbone with cross-shaped windows

X Dong, J Bao, D Chen, W Zhang… - Proceedings of the …, 2022 - openaccess.thecvf.com
Abstract We present CSWin Transformer, an efficient and effective Transformer-based
backbone for general-purpose vision tasks. A challenging issue in Transformer design is …

Multiscale vision transformers

H Fan, B **ong, K Mangalam, Y Li… - Proceedings of the …, 2021 - openaccess.thecvf.com
Abstract We present Multiscale Vision Transformers (MViT) for video and image recognition,
by connecting the seminal idea of multiscale feature hierarchies with transformer models …

Fnet: Mixing tokens with fourier transforms

J Lee-Thorp, J Ainslie, I Eckstein, S Ontanon - arxiv preprint arxiv …, 2021 - arxiv.org
We show that Transformer encoder architectures can be sped up, with limited accuracy
costs, by replacing the self-attention sublayers with simple linear transformations that" mix" …

A-vit: Adaptive tokens for efficient vision transformer

H Yin, A Vahdat, JM Alvarez, A Mallya… - Proceedings of the …, 2022 - openaccess.thecvf.com
We introduce A-ViT, a method that adaptively adjusts the inference cost of vision transformer
ViT for images of different complexity. A-ViT achieves this by automatically reducing the …

Transformers in vision: A survey

S Khan, M Naseer, M Hayat, SW Zamir… - ACM computing …, 2022 - dl.acm.org
Astounding results from Transformer models on natural language tasks have intrigued the
vision community to study their application to computer vision problems. Among their salient …

Diffusion models without attention

JN Yan, J Gu, AM Rush - … of the IEEE/CVF Conference on …, 2024 - openaccess.thecvf.com
In recent advancements in high-fidelity image generation Denoising Diffusion Probabilistic
Models (DDPMs) have emerged as a key player. However their application at high …