Distributed artificial intelligence empowered by end-edge-cloud computing: A survey
As the computing paradigm shifts from cloud computing to end-edge-cloud computing, it
also supports artificial intelligence evolving from a centralized manner to a distributed one …
also supports artificial intelligence evolving from a centralized manner to a distributed one …
A state-of-the-art survey on solving non-iid data in federated learning
Federated Learning (FL) proposed in recent years has received significant attention from
researchers in that it can enable multiple clients to cooperatively train global models without …
researchers in that it can enable multiple clients to cooperatively train global models without …
Fine-tuning global model via data-free knowledge distillation for non-iid federated learning
Federated Learning (FL) is an emerging distributed learning paradigm under privacy
constraint. Data heterogeneity is one of the main challenges in FL, which results in slow …
constraint. Data heterogeneity is one of the main challenges in FL, which results in slow …
A review of applications in federated learning
L Li, Y Fan, M Tse, KY Lin - Computers & Industrial Engineering, 2020 - Elsevier
Federated Learning (FL) is a collaboratively decentralized privacy-preserving technology to
overcome challenges of data silos and data sensibility. Exactly what research is carrying the …
overcome challenges of data silos and data sensibility. Exactly what research is carrying the …
A survey on federated learning: The journey from centralized to distributed on-site learning and beyond
S AbdulRahman, H Tout… - IEEE Internet of …, 2020 - ieeexplore.ieee.org
Driven by privacy concerns and the visions of deep learning, the last four years have
witnessed a paradigm shift in the applicability mechanism of machine learning (ML). An …
witnessed a paradigm shift in the applicability mechanism of machine learning (ML). An …
Federated learning in smart city sensing: Challenges and opportunities
Smart Cities sensing is an emerging paradigm to facilitate the transition into smart city
services. The advent of the Internet of Things (IoT) and the widespread use of mobile …
services. The advent of the Internet of Things (IoT) and the widespread use of mobile …
Pysyft: A library for easy federated learning
PySyft is an open-source multi-language library enabling secure and private machine
learning by wrap** and extending popular deep learning frameworks such as PyTorch in …
learning by wrap** and extending popular deep learning frameworks such as PyTorch in …
Edge intelligence: Empowering intelligence to the edge of network
Edge intelligence refers to a set of connected systems and devices for data collection,
caching, processing, and analysis proximity to where data are captured based on artificial …
caching, processing, and analysis proximity to where data are captured based on artificial …
Harmofl: Harmonizing local and global drifts in federated learning on heterogeneous medical images
Multiple medical institutions collaboratively training a model using federated learning (FL)
has become a promising solution for maximizing the potential of data-driven models, yet the …
has become a promising solution for maximizing the potential of data-driven models, yet the …
Review on security of federated learning and its application in healthcare
Artificial intelligence (AI) has led to a high rate of development in healthcare, and good
progress has been made on many complex medical problems. However, there is a lack of …
progress has been made on many complex medical problems. However, there is a lack of …