Distributed artificial intelligence empowered by end-edge-cloud computing: A survey

S Duan, D Wang, J Ren, F Lyu, Y Zhang… - … Surveys & Tutorials, 2022 - ieeexplore.ieee.org
As the computing paradigm shifts from cloud computing to end-edge-cloud computing, it
also supports artificial intelligence evolving from a centralized manner to a distributed one …

A state-of-the-art survey on solving non-iid data in federated learning

X Ma, J Zhu, Z Lin, S Chen, Y Qin - Future Generation Computer Systems, 2022 - Elsevier
Federated Learning (FL) proposed in recent years has received significant attention from
researchers in that it can enable multiple clients to cooperatively train global models without …

Fine-tuning global model via data-free knowledge distillation for non-iid federated learning

L Zhang, L Shen, L Ding, D Tao… - Proceedings of the …, 2022 - openaccess.thecvf.com
Federated Learning (FL) is an emerging distributed learning paradigm under privacy
constraint. Data heterogeneity is one of the main challenges in FL, which results in slow …

A review of applications in federated learning

L Li, Y Fan, M Tse, KY Lin - Computers & Industrial Engineering, 2020 - Elsevier
Federated Learning (FL) is a collaboratively decentralized privacy-preserving technology to
overcome challenges of data silos and data sensibility. Exactly what research is carrying the …

A survey on federated learning: The journey from centralized to distributed on-site learning and beyond

S AbdulRahman, H Tout… - IEEE Internet of …, 2020 - ieeexplore.ieee.org
Driven by privacy concerns and the visions of deep learning, the last four years have
witnessed a paradigm shift in the applicability mechanism of machine learning (ML). An …

Federated learning in smart city sensing: Challenges and opportunities

JC Jiang, B Kantarci, S Oktug, T Soyata - Sensors, 2020 - mdpi.com
Smart Cities sensing is an emerging paradigm to facilitate the transition into smart city
services. The advent of the Internet of Things (IoT) and the widespread use of mobile …

Pysyft: A library for easy federated learning

A Ziller, A Trask, A Lopardo, B Szymkow… - … Systems: Towards Next …, 2021 - Springer
PySyft is an open-source multi-language library enabling secure and private machine
learning by wrap** and extending popular deep learning frameworks such as PyTorch in …

Edge intelligence: Empowering intelligence to the edge of network

D Xu, T Li, Y Li, X Su, S Tarkoma, T Jiang… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Edge intelligence refers to a set of connected systems and devices for data collection,
caching, processing, and analysis proximity to where data are captured based on artificial …

Harmofl: Harmonizing local and global drifts in federated learning on heterogeneous medical images

M Jiang, Z Wang, Q Dou - Proceedings of the AAAI Conference on …, 2022 - ojs.aaai.org
Multiple medical institutions collaboratively training a model using federated learning (FL)
has become a promising solution for maximizing the potential of data-driven models, yet the …

Review on security of federated learning and its application in healthcare

H Li, C Li, J Wang, A Yang, Z Ma, Z Zhang… - Future Generation …, 2023 - Elsevier
Artificial intelligence (AI) has led to a high rate of development in healthcare, and good
progress has been made on many complex medical problems. However, there is a lack of …