Survey of explainable AI techniques in healthcare
Artificial intelligence (AI) with deep learning models has been widely applied in numerous
domains, including medical imaging and healthcare tasks. In the medical field, any judgment …
domains, including medical imaging and healthcare tasks. In the medical field, any judgment …
Explainable artificial intelligence: a comprehensive review
Thanks to the exponential growth in computing power and vast amounts of data, artificial
intelligence (AI) has witnessed remarkable developments in recent years, enabling it to be …
intelligence (AI) has witnessed remarkable developments in recent years, enabling it to be …
[HTML][HTML] Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence
Artificial intelligence (AI) is currently being utilized in a wide range of sophisticated
applications, but the outcomes of many AI models are challenging to comprehend and trust …
applications, but the outcomes of many AI models are challenging to comprehend and trust …
From anecdotal evidence to quantitative evaluation methods: A systematic review on evaluating explainable ai
The rising popularity of explainable artificial intelligence (XAI) to understand high-performing
black boxes raised the question of how to evaluate explanations of machine learning (ML) …
black boxes raised the question of how to evaluate explanations of machine learning (ML) …
Interpretable machine learning: Fundamental principles and 10 grand challenges
Interpretability in machine learning (ML) is crucial for high stakes decisions and
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …
A systematic review of explainable artificial intelligence in terms of different application domains and tasks
Artificial intelligence (AI) and machine learning (ML) have recently been radically improved
and are now being employed in almost every application domain to develop automated or …
and are now being employed in almost every application domain to develop automated or …
Evaluating the quality of machine learning explanations: A survey on methods and metrics
The most successful Machine Learning (ML) systems remain complex black boxes to end-
users, and even experts are often unable to understand the rationale behind their decisions …
users, and even experts are often unable to understand the rationale behind their decisions …
A survey on neural network interpretability
Along with the great success of deep neural networks, there is also growing concern about
their black-box nature. The interpretability issue affects people's trust on deep learning …
their black-box nature. The interpretability issue affects people's trust on deep learning …
Interpretable machine learning–a brief history, state-of-the-art and challenges
We present a brief history of the field of interpretable machine learning (IML), give an
overview of state-of-the-art interpretation methods and discuss challenges. Research in IML …
overview of state-of-the-art interpretation methods and discuss challenges. Research in IML …
[HTML][HTML] The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and …
Artificial intelligence (AI) has huge potential to improve the health and well-being of people,
but adoption in clinical practice is still limited. Lack of transparency is identified as one of the …
but adoption in clinical practice is still limited. Lack of transparency is identified as one of the …