[BOOK][B] Index theory with applications to mathematics and physics
D Bleecker, B Booss - 2013 - s3.cern.ch
Target Audience and Prerequisites. The mathematical philosophy of index theory and all its
basic concepts, technicalities and applications are explained in Parts I-III. Those are the …
basic concepts, technicalities and applications are explained in Parts I-III. Those are the …
Higher orbital integrals, rho numbers and index theory
P Piazza, H Posthuma, Y Song, X Tang - Mathematische Annalen, 2024 - Springer
Let G be a connected, linear real reductive group. We give sufficient conditions ensuring the
well-definedness of the delocalized eta invariant\(\eta _g (D_X)\) associated to a Dirac …
well-definedness of the delocalized eta invariant\(\eta _g (D_X)\) associated to a Dirac …
-index formula for proper cocompact group actions
H Wang - Journal of Noncommutative Geometry, 2014 - content.ems.press
We study index theory of G-invariant elliptic pseudo-differential operators acting on a
complete Riemannian manifold, where a unimodular, locally compact group G acts properly …
complete Riemannian manifold, where a unimodular, locally compact group G acts properly …
[PDF][PDF] Eta-invariant for parameter-dependent families with periodic coefficients
KN Zhuikov, AY Savin - Ufa Math. J, 2022 - matem.anrb.ru
On a closed smooth manifold, we consider operator families being linear combinations of
parameter-dependent pseudodifferential operators with periodic coefficients. Such families …
parameter-dependent pseudodifferential operators with periodic coefficients. Such families …
Eta cocycles, relative pairings and the Godbillon–Vey index theorem
H Moriyoshi, P Piazza - Geometric and Functional Analysis, 2012 - Springer
Abstract We prove a Godbillon–Vey index formula for longitudinal Dirac operators on a
foliated bundle with boundary (X, F); in particular, we define a Godbillon–Vey eta invariant …
foliated bundle with boundary (X, F); in particular, we define a Godbillon–Vey eta invariant …
Noncommutative geometry and conformal geometry, II. Connes–Chern character and the local equivariant index theorem
This paper is the second part of a series of papers on noncommutative geometry and
conformal geometry. In this paper, we compute explicitly the Connes–Chern character of an …
conformal geometry. In this paper, we compute explicitly the Connes–Chern character of an …
Fredholm conditions and index for restrictions of invariant pseudodifferential operators to isotypical components
Let $\Gamma $ be a compact group acting on a smooth, compact manifold $ M $, let $
P\in\psi^ m (M; E_0, E_1) $ be a $\Gamma $-invariant, classical pseudodifferential operator …
P\in\psi^ m (M; E_0, E_1) $ be a $\Gamma $-invariant, classical pseudodifferential operator …
[HTML][HTML] Getzler rescaling via adiabatic deformation and a renormalized index formula
We prove an index theorem of Atiyah–Singer type for Dirac operators on manifolds with a
Lie structure at infinity (Lie manifolds for short). With the help of a renormalized supertrace …
Lie structure at infinity (Lie manifolds for short). With the help of a renormalized supertrace …
[HTML][HTML] Эта-инвариант для семейств с параметром и периодическими коэффициентами
КН Жуйков, АЮ Савин - Уфимский математический журнал, 2022 - cyberleninka.ru
На гладком замкнутом многообразии рассматривается семейство операторов вида
линейной комбинации псевдодифференциальных операторов с параметром с …
линейной комбинации псевдодифференциальных операторов с параметром с …
A note on the higher Atiyah–Patodi–Singer index theorem on Galois coverings
A Gorokhovsky, H Moriyoshi, P Piazza - Journal of Noncommutative …, 2016 - ems.press
Let be a finitely generated discrete group satisfying the rapid decay condition. We give a
new proof of the higher Atiyah–Patodi–Singer theorem on a Galois-coverings, thus providing …
new proof of the higher Atiyah–Patodi–Singer theorem on a Galois-coverings, thus providing …