Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Well-posedness of the Prandtl equation in Sobolev spaces
We develop a new approach to study the well-posedness theory of the Prandtl equation in
Sobolev spaces by using a direct energy method under a monotonicity condition on the …
Sobolev spaces by using a direct energy method under a monotonicity condition on the …
Local‐in‐time existence and uniqueness of solutions to the Prandtl equations by energy methods
We prove local existence and uniqueness for the two‐dimensional Prandtl system in
weighted Sobolev spaces under Oleinik's monotonicity assumption. In particular we do not …
weighted Sobolev spaces under Oleinik's monotonicity assumption. In particular we do not …
On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half‐plane
Y Maekawa - Communications on Pure and Applied …, 2014 - Wiley Online Library
We consider the Navier‐Stokes equations for viscous incompressible flows in the half‐plane
under the no‐slip boundary condition. By using the vorticity formulation we prove the local …
under the no‐slip boundary condition. By using the vorticity formulation we prove the local …
Long‐Time Instability of the Couette Flow in Low Gevrey Spaces
We prove the instability of the Couette flow if the disturbances is less smooth than the
Gevrey space of class 2. This shows that this is the critical regularity for this problem since it …
Gevrey space of class 2. This shows that this is the critical regularity for this problem since it …
Gevrey stability of Prandtl expansions for -dimensional Navier–Stokes flows
D Gérard-Varet, Y Maekawa, N Masmoudi - 2018 - projecteuclid.org
We investigate the stability of boundary layer solutions of the 2-dimensional incompressible
Navier–Stokes equations. We consider shear flow solutions of Prandtl type: u ν (t, x, y)=(UE …
Navier–Stokes equations. We consider shear flow solutions of Prandtl type: u ν (t, x, y)=(UE …
Well-posedness for the Prandtl system without analyticity or monotonicity
D Gerard-Varet, N Masmoudi - Annales scientifiques de l'École …, 2015 - numdam.org
R.–Il a longtemps été supposé que l'équation de Prandtl n'est bien posée que sous
l'hypothèse de monotonie d'Oleinik, ou pour des données analytiques. Nous montrons …
l'hypothèse de monotonie d'Oleinik, ou pour des données analytiques. Nous montrons …
Well-posedness of the Prandtl equations without any structural assumption
H Dietert, D Gérard-Varet - Annals of PDE, 2019 - Springer
We show the local in time well-posedness of the Prandtl equations for data with Gevrey 2
regularity in x and Sobolev regularity in y. The main novelty of our result is that we do not …
regularity in x and Sobolev regularity in y. The main novelty of our result is that we do not …
A note on Prandtl boundary layers
This note concerns nonlinear ill‐posedness of the Prandtl equation and an invalidity of
asymptotic boundary layer expansions of incompressible fluid flows near a solid boundary …
asymptotic boundary layer expansions of incompressible fluid flows near a solid boundary …
Almost global existence for the Prandtl boundary layer equations
We consider the Prandtl boundary layer equations on the half plane, with initial datum that
lies in a weighted H 1 space with respect to the normal variable, and is real-analytic with …
lies in a weighted H 1 space with respect to the normal variable, and is real-analytic with …
MHD Boundary Layers Theory in Sobolev Spaces Without Monotonicity I: Well‐Posedness Theory
We study the well‐posedness theory for the MHD boundary layer. The boundary layer
equations are governed by the Prandtl‐type equations that are derived from the …
equations are governed by the Prandtl‐type equations that are derived from the …