[HTML][HTML] The variational quantum eigensolver: a review of methods and best practices

J Tilly, H Chen, S Cao, D Picozzi, K Setia, Y Li, E Grant… - Physics Reports, 2022 - Elsevier
The variational quantum eigensolver (or VQE), first developed by Peruzzo et al.(2014), has
received significant attention from the research community in recent years. It uses the …

Noisy intermediate-scale quantum algorithms

K Bharti, A Cervera-Lierta, TH Kyaw, T Haug… - Reviews of Modern …, 2022 - APS
A universal fault-tolerant quantum computer that can efficiently solve problems such as
integer factorization and unstructured database search requires millions of qubits with low …

Theory of overparametrization in quantum neural networks

M Larocca, N Ju, D García-Martín, PJ Coles… - Nature Computational …, 2023 - nature.com
The prospect of achieving quantum advantage with quantum neural networks (QNNs) is
exciting. Understanding how QNN properties (for example, the number of parameters M) …

Avoiding barren plateaus using classical shadows

SH Sack, RA Medina, AA Michailidis, R Kueng… - PRX Quantum, 2022 - APS
Variational quantum algorithms are promising algorithms for achieving quantum advantage
on near-term devices. The quantum hardware is used to implement a variational wave …

NISQ computing: where are we and where do we go?

JWZ Lau, KH Lim, H Shrotriya, LC Kwek - AAPPS bulletin, 2022 - Springer
In this short review article, we aim to provide physicists not working within the quantum
computing community a hopefully easy-to-read introduction to the state of the art in the field …

Understanding quantum machine learning also requires rethinking generalization

E Gil-Fuster, J Eisert, C Bravo-Prieto - Nature Communications, 2024 - nature.com
Quantum machine learning models have shown successful generalization performance
even when trained with few data. In this work, through systematic randomization …

Recent advances for quantum classifiers

W Li, DL Deng - Science China Physics, Mechanics & Astronomy, 2022 - Springer
Abstract Machine learning has achieved dramatic success in a broad spectrum of
applications. Its interplay with quantum physics may lead to unprecedented perspectives for …

Representation learning via quantum neural tangent kernels

J Liu, F Tacchino, JR Glick, L Jiang, A Mezzacapo - PRX Quantum, 2022 - APS
Variational quantum circuits are used in quantum machine learning and variational quantum
simulation tasks. Designing good variational circuits or predicting how well they perform for …

Scalable measures of magic resource for quantum computers

T Haug, MS Kim - PRX Quantum, 2023 - APS
Nonstabilizerness or magic resource characterizes the amount of non-Clifford operations
needed to prepare quantum states. It is a crucial resource for quantum computing and a …

Problem-dependent power of quantum neural networks on multiclass classification

Y Du, Y Yang, D Tao, MH Hsieh - Physical Review Letters, 2023 - APS
Quantum neural networks (QNNs) have become an important tool for understanding the
physical world, but their advantages and limitations are not fully understood. Some QNNs …