[HTML][HTML] Review of image classification algorithms based on convolutional neural networks

L Chen, S Li, Q Bai, J Yang, S Jiang, Y Miao - Remote Sensing, 2021 - mdpi.com
Image classification has always been a hot research direction in the world, and the
emergence of deep learning has promoted the development of this field. Convolutional …

Ensemble deep learning: A review

MA Ganaie, M Hu, AK Malik, M Tanveer… - … Applications of Artificial …, 2022 - Elsevier
Ensemble learning combines several individual models to obtain better generalization
performance. Currently, deep learning architectures are showing better performance …

Towards automated circuit discovery for mechanistic interpretability

A Conmy, A Mavor-Parker, A Lynch… - Advances in …, 2023 - proceedings.neurips.cc
Through considerable effort and intuition, several recent works have reverse-engineered
nontrivial behaviors oftransformer models. This paper systematizes the mechanistic …

Deja vu: Contextual sparsity for efficient llms at inference time

Z Liu, J Wang, T Dao, T Zhou, B Yuan… - International …, 2023 - proceedings.mlr.press
Large language models (LLMs) with hundreds of billions of parameters have sparked a new
wave of exciting AI applications. However, they are computationally expensive at inference …

Explainability for large language models: A survey

H Zhao, H Chen, F Yang, N Liu, H Deng, H Cai… - ACM Transactions on …, 2024 - dl.acm.org
Large language models (LLMs) have demonstrated impressive capabilities in natural
language processing. However, their internal mechanisms are still unclear and this lack of …

Scaling up your kernels to 31x31: Revisiting large kernel design in cnns

X Ding, X Zhang, J Han, G Ding - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
We revisit large kernel design in modern convolutional neural networks (CNNs). Inspired by
recent advances in vision transformers (ViTs), in this paper, we demonstrate that using a few …

Foundational challenges in assuring alignment and safety of large language models

U Anwar, A Saparov, J Rando, D Paleka… - arxiv preprint arxiv …, 2024 - arxiv.org
This work identifies 18 foundational challenges in assuring the alignment and safety of large
language models (LLMs). These challenges are organized into three different categories …

Representation engineering: A top-down approach to ai transparency

A Zou, L Phan, S Chen, J Campbell, P Guo… - arxiv preprint arxiv …, 2023 - arxiv.org
In this paper, we identify and characterize the emerging area of representation engineering
(RepE), an approach to enhancing the transparency of AI systems that draws on insights …

Deep physical neural networks trained with backpropagation

LG Wright, T Onodera, MM Stein, T Wang… - Nature, 2022 - nature.com
Deep-learning models have become pervasive tools in science and engineering. However,
their energy requirements now increasingly limit their scalability. Deep-learning …

Repvgg: Making vgg-style convnets great again

X Ding, X Zhang, N Ma, J Han… - Proceedings of the …, 2021 - openaccess.thecvf.com
We present a simple but powerful architecture of convolutional neural network, which has a
VGG-like inference-time body composed of nothing but a stack of 3x3 convolution and …