A comprehensive survey on deep graph representation learning
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …
structured data into low-dimensional dense vectors, which is a fundamental task that has …
Contrastive self-supervised learning: review, progress, challenges and future research directions
In the last decade, deep supervised learning has had tremendous success. However, its
flaws, such as its dependency on manual and costly annotations on large datasets and …
flaws, such as its dependency on manual and costly annotations on large datasets and …
Graphgpt: Graph instruction tuning for large language models
Graph Neural Networks (GNNs) have evolved to understand graph structures through
recursive exchanges and aggregations among nodes. To enhance robustness, self …
recursive exchanges and aggregations among nodes. To enhance robustness, self …
Data augmentation for deep graph learning: A survey
Graph neural networks, a powerful deep learning tool to model graph-structured data, have
demonstrated remarkable performance on numerous graph learning tasks. To address the …
demonstrated remarkable performance on numerous graph learning tasks. To address the …
LightGCL: Simple yet effective graph contrastive learning for recommendation
Graph neural network (GNN) is a powerful learning approach for graph-based recommender
systems. Recently, GNNs integrated with contrastive learning have shown superior …
systems. Recently, GNNs integrated with contrastive learning have shown superior …
All in one: Multi-task prompting for graph neural networks
Recently," pre-training and fine-tuning''has been adopted as a standard workflow for many
graph tasks since it can take general graph knowledge to relieve the lack of graph …
graph tasks since it can take general graph knowledge to relieve the lack of graph …
Spectral feature augmentation for graph contrastive learning and beyond
Although augmentations (eg, perturbation of graph edges, image crops) boost the efficiency
of Contrastive Learning (CL), feature level augmentation is another plausible …
of Contrastive Learning (CL), feature level augmentation is another plausible …
Cluster-guided contrastive graph clustering network
Benefiting from the intrinsic supervision information exploitation capability, contrastive
learning has achieved promising performance in the field of deep graph clustering recently …
learning has achieved promising performance in the field of deep graph clustering recently …
Graphmae2: A decoding-enhanced masked self-supervised graph learner
Graph self-supervised learning (SSL), including contrastive and generative approaches,
offers great potential to address the fundamental challenge of label scarcity in real-world …
offers great potential to address the fundamental challenge of label scarcity in real-world …
Simple contrastive graph clustering
Contrastive learning has recently attracted plenty of attention in deep graph clustering due to
its promising performance. However, complicated data augmentations and time-consuming …
its promising performance. However, complicated data augmentations and time-consuming …