A comprehensive survey of privacy-preserving federated learning: A taxonomy, review, and future directions

X Yin, Y Zhu, J Hu - ACM Computing Surveys (CSUR), 2021 - dl.acm.org
The past four years have witnessed the rapid development of federated learning (FL).
However, new privacy concerns have also emerged during the aggregation of the …

When machine learning meets privacy: A survey and outlook

B Liu, M Ding, S Shaham, W Rahayu… - ACM Computing …, 2021 - dl.acm.org
The newly emerged machine learning (eg, deep learning) methods have become a strong
driving force to revolutionize a wide range of industries, such as smart healthcare, financial …

Membership inference attacks against machine learning models

R Shokri, M Stronati, C Song… - 2017 IEEE symposium …, 2017 - ieeexplore.ieee.org
We quantitatively investigate how machine learning models leak information about the
individual data records on which they were trained. We focus on the basic membership …

Stealing machine learning models via prediction {APIs}

F Tramèr, F Zhang, A Juels, MK Reiter… - 25th USENIX security …, 2016 - usenix.org
Machine learning (ML) models may be deemed confidential due to their sensitive training
data, commercial value, or use in security applications. Increasingly often, confidential ML …

Privacy-preserving deep learning

R Shokri, V Shmatikov - Proceedings of the 22nd ACM SIGSAC …, 2015 - dl.acm.org
Deep learning based on artificial neural networks is a very popular approach to modeling,
classifying, and recognizing complex data such as images, speech, and text. The …

How to dp-fy ml: A practical guide to machine learning with differential privacy

N Ponomareva, H Hazimeh, A Kurakin, Z Xu… - Journal of Artificial …, 2023 - jair.org
Abstract Machine Learning (ML) models are ubiquitous in real-world applications and are a
constant focus of research. Modern ML models have become more complex, deeper, and …

Deep models under the GAN: information leakage from collaborative deep learning

B Hitaj, G Ateniese, F Perez-Cruz - … of the 2017 ACM SIGSAC conference …, 2017 - dl.acm.org
Deep Learning has recently become hugely popular in machine learning for its ability to
solve end-to-end learning systems, in which the features and the classifiers are learned …

Privacy risk in machine learning: Analyzing the connection to overfitting

S Yeom, I Giacomelli, M Fredrikson… - 2018 IEEE 31st …, 2018 - ieeexplore.ieee.org
Machine learning algorithms, when applied to sensitive data, pose a distinct threat to
privacy. A growing body of prior work demonstrates that models produced by these …

Differential privacy for deep and federated learning: A survey

A El Ouadrhiri, A Abdelhadi - IEEE access, 2022 - ieeexplore.ieee.org
Users' privacy is vulnerable at all stages of the deep learning process. Sensitive information
of users may be disclosed during data collection, during training, or even after releasing the …

Wireless network intelligence at the edge

J Park, S Samarakoon, M Bennis… - Proceedings of the …, 2019 - ieeexplore.ieee.org
Fueled by the availability of more data and computing power, recent breakthroughs in cloud-
based machine learning (ML) have transformed every aspect of our lives from face …