Distributed artificial intelligence empowered by end-edge-cloud computing: A survey
As the computing paradigm shifts from cloud computing to end-edge-cloud computing, it
also supports artificial intelligence evolving from a centralized manner to a distributed one …
also supports artificial intelligence evolving from a centralized manner to a distributed one …
[HTML][HTML] Review of image classification algorithms based on convolutional neural networks
L Chen, S Li, Q Bai, J Yang, S Jiang, Y Miao - Remote Sensing, 2021 - mdpi.com
Image classification has always been a hot research direction in the world, and the
emergence of deep learning has promoted the development of this field. Convolutional …
emergence of deep learning has promoted the development of this field. Convolutional …
[HTML][HTML] Deep learning in food category recognition
Integrating artificial intelligence with food category recognition has been a field of interest for
research for the past few decades. It is potentially one of the next steps in revolutionizing …
research for the past few decades. It is potentially one of the next steps in revolutionizing …
GhostNetv2: Enhance cheap operation with long-range attention
Light-weight convolutional neural networks (CNNs) are specially designed for applications
on mobile devices with faster inference speed. The convolutional operation can only capture …
on mobile devices with faster inference speed. The convolutional operation can only capture …
Designing network design strategies through gradient path analysis
Designing a high-efficiency and high-quality expressive network architecture has always
been the most important research topic in the field of deep learning. Most of today's network …
been the most important research topic in the field of deep learning. Most of today's network …
Beyond transmitting bits: Context, semantics, and task-oriented communications
Communication systems to date primarily aim at reliably communicating bit sequences.
Such an approach provides efficient engineering designs that are agnostic to the meanings …
Such an approach provides efficient engineering designs that are agnostic to the meanings …
Ego-exo4d: Understanding skilled human activity from first-and third-person perspectives
Abstract We present Ego-Exo4D a diverse large-scale multimodal multiview video dataset
and benchmark challenge. Ego-Exo4D centers around simultaneously-captured egocentric …
and benchmark challenge. Ego-Exo4D centers around simultaneously-captured egocentric …
Edgenext: efficiently amalgamated cnn-transformer architecture for mobile vision applications
In the pursuit of achieving ever-increasing accuracy, large and complex neural networks are
usually developed. Such models demand high computational resources and therefore …
usually developed. Such models demand high computational resources and therefore …
Cmt: Convolutional neural networks meet vision transformers
Vision transformers have been successfully applied to image recognition tasks due to their
ability to capture long-range dependencies within an image. However, there are still gaps in …
ability to capture long-range dependencies within an image. However, there are still gaps in …
Harnessing multimodal data integration to advance precision oncology
Advances in quantitative biomarker development have accelerated new forms of data-driven
insights for patients with cancer. However, most approaches are limited to a single mode of …
insights for patients with cancer. However, most approaches are limited to a single mode of …