Exploration in deep reinforcement learning: From single-agent to multiagent domain

J Hao, T Yang, H Tang, C Bai, J Liu… - … on Neural Networks …, 2023 - ieeexplore.ieee.org
Deep reinforcement learning (DRL) and deep multiagent reinforcement learning (MARL)
have achieved significant success across a wide range of domains, including game artificial …

Nuclear norm maximization-based curiosity-driven reinforcement learning

C Chen, Y Zhai, Z Gao, K Xu, S Yang… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
Reinforcement learning (RL) has achieved promising results in solving numerous
challenging sequential decision problems. To address the issue of sparse extrinsic rewards …

Hyperparameter auto-tuning in self-supervised robotic learning

J Huang, J Rojas, M Zimmer, H Wu… - IEEE Robotics and …, 2021 - ieeexplore.ieee.org
Policy optimization in reinforcement learning requires the selection of numerous
hyperparameters across different environments. Fixing them incorrectly may negatively …

Active inference and reinforcement learning: A unified inference on continuous state and action spaces under partial observability

P Malekzadeh, KN Plataniotis - Neural Computation, 2024 - direct.mit.edu
Reinforcement learning (RL) has garnered significant attention for develo** decision-
making agents that aim to maximize rewards, specified by an external supervisor, within fully …

[HTML][HTML] Мультиагентное обучение с подкреплением с использованием коллективной внутренней мотивации

ВЭ Большаков, СА Сакулин… - … университета им. НЭ …, 2023 - cyberleninka.ru
Одной из серьезных проблем в обучении с подкреплением являются редкие
вознаграждения от среды. Для решения этой задачи необходимы эффективные …

Actively learning costly reward functions for reinforcement learning

A Eberhard, H Metni, G Fahland, A Stroh… - Machine Learning …, 2024 - iopscience.iop.org
Transfer of recent advances in deep reinforcement learning to real-world applications is
hindered by high data demands and thus low efficiency and scalability. Through …

Influence-based reinforcement learning for intrinsically-motivated agents

A Fayad, M Ibrahim - arxiv preprint arxiv:2108.12581, 2021 - arxiv.org
Discovering successful coordinated behaviors is a central challenge in Multi-Agent
Reinforcement Learning (MARL) since it requires exploring a joint action space that grows …

Discriminative reward co-training

P Altmann, F Ritz, M Zorn, M Kölle, T Phan… - Neural Computing and …, 2024 - Springer
We propose discriminative reward co-training (DIRECT) as an extension to deep
reinforcement learning algorithms. Building upon the concept of self-imitation learning (SIL) …

Advancing Efficiency and Safety in Autonomous Sequential Decision Making

P Malekzadeh - 2024 - search.proquest.com
The advent of reinforcement learning (RL) has significantly transformed decision making in
autonomous systems. However, its practical deployment faces substantial obstacles, chiefly …

Variational Learned Priors for Intrinsically Motivated Reinforcement Learning

J Nicholson, JS Goodier, A Patel, Ö Şimşek - openreview.net
Efficient exploration is a fundamental challenge in reinforcement learning, especially in
environments with sparse rewards. Intrinsic motivation can improve exploration efficiency by …