Advances in lithium–sulfur batteries: from academic research to commercial viability

Y Chen, T Wang, H Tian, D Su, Q Zhang… - Advanced …, 2021 - Wiley Online Library
Lithium‐ion batteries, which have revolutionized portable electronics over the past three
decades, were eventually recognized with the 2019 Nobel Prize in chemistry. As the energy …

Review on high‐loading and high‐energy lithium–sulfur batteries

HJ Peng, JQ Huang, XB Cheng… - Advanced Energy …, 2017 - Wiley Online Library
Owing to high specific energy, low cost, and environmental friendliness, lithium–sulfur (Li–S)
batteries hold great promise to meet the increasing demand for advanced energy storage …

More reliable lithium‐sulfur batteries: status, solutions and prospects

R Fang, S Zhao, Z Sun, DW Wang… - Advanced …, 2017 - Wiley Online Library
Abstract Lithium‐sulfur (Li‐S) batteries have attracted tremendous interest because of their
high theoretical energy density and cost effectiveness. The target of Li‐S battery research is …

Electrolyte solutions design for lithium-sulfur batteries

Y Liu, Y Elias, J Meng, D Aurbach, R Zou, D **a… - Joule, 2021 - cell.com
Summary Lithium-sulfur (Li-S) batteries promise high energy density for next-generation
energy storage systems, yet many challenges remain. Li-S batteries follow a conversion …

Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities

M Zhao, BQ Li, HJ Peng, H Yuan… - Angewandte Chemie …, 2020 - Wiley Online Library
The development of energy‐storage devices has received increasing attention as a
transformative technology to realize a low‐carbon economy and sustainable energy supply …

Current status and future prospects of metal–sulfur batteries

SH Chung, A Manthiram - Advanced Materials, 2019 - Wiley Online Library
Lithium–sulfur batteries are a major focus of academic and industrial energy‐storage
research due to their high theoretical energy density and the use of low‐cost materials. The …

Boosting lean electrolyte lithium–sulfur battery performance with transition metals: a comprehensive review

H Pan, Z Cheng, Z Zhou, S **e, W Zhang, N Han… - Nano-Micro Letters, 2023 - Springer
Abstract Lithium–sulfur (Li–S) batteries have received widespread attention, and lean
electrolyte Li–S batteries have attracted additional interest because of their higher energy …

Energy storage emerging: A perspective from the Joint Center for Energy Storage Research

L Trahey, FR Brushett, NP Balsara… - Proceedings of the …, 2020 - National Acad Sciences
Energy storage is an integral part of modern society. A contemporary example is the lithium
(Li)-ion battery, which enabled the launch of the personal electronics revolution in 1991 and …

Metal–iodine batteries: achievements, challenges, and future

L Zhang, H Guo, W Zong, Y Huang, J Huang… - Energy & …, 2023 - pubs.rsc.org
Metal–iodine batteries (MIBs) are becoming increasingly popular due to their intrinsic
advantages, such as a limited number of reaction intermediates, high electrochemical …

Carbon nanomaterials for advanced lithium sulfur batteries

ZL Xu, JK Kim, K Kang - Nano Today, 2018 - Elsevier
Taking advantage of a high theoretical energy density of 2567 Wh kg-1, lithium sulfur
batteries (LSBs) have been considered promising candidates for next-generation energy …