Deep learning for anomaly detection: A review

G Pang, C Shen, L Cao, AVD Hengel - ACM computing surveys (CSUR), 2021 - dl.acm.org
Anomaly detection, aka outlier detection or novelty detection, has been a lasting yet active
research area in various research communities for several decades. There are still some …

A comprehensive survey on graph anomaly detection with deep learning

X Ma, J Wu, S Xue, J Yang, C Zhou… - … on Knowledge and …, 2021 - ieeexplore.ieee.org
Anomalies are rare observations (eg, data records or events) that deviate significantly from
the others in the sample. Over the past few decades, research on anomaly mining has …

[BOOK][B] Neural networks and deep learning

CC Aggarwal - 2018 - Springer
“Any AI smart enough to pass a Turing test is smart enough to know to fail it.”–*** Ian
McDonald Neural networks were developed to simulate the human nervous system for …

Evolvegcn: Evolving graph convolutional networks for dynamic graphs

A Pareja, G Domeniconi, J Chen, T Ma… - Proceedings of the AAAI …, 2020 - aaai.org
Graph representation learning resurges as a trending research subject owing to the
widespread use of deep learning for Euclidean data, which inspire various creative designs …

MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks

D Li, D Chen, B **, L Shi, J Goh, SK Ng - International conference on …, 2019 - Springer
Many real-world cyber-physical systems (CPSs) are engineered for mission-critical tasks
and usually are prime targets for cyber-attacks. The rich sensor data in CPSs can be …

Temporal graph networks for deep learning on dynamic graphs

E Rossi, B Chamberlain, F Frasca, D Eynard… - arxiv preprint arxiv …, 2020 - arxiv.org
Graph Neural Networks (GNNs) have recently become increasingly popular due to their
ability to learn complex systems of relations or interactions arising in a broad spectrum of …

ROLAND: graph learning framework for dynamic graphs

J You, T Du, J Leskovec - Proceedings of the 28th ACM SIGKDD …, 2022 - dl.acm.org
Graph Neural Networks (GNNs) have been successfully applied to many real-world static
graphs. However, the success of static graphs has not fully translated to dynamic graphs due …

Anomaly detection on attributed networks via contrastive self-supervised learning

Y Liu, Z Li, S Pan, C Gong, C Zhou… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Anomaly detection on attributed networks attracts considerable research interests due to
wide applications of attributed networks in modeling a wide range of complex systems …

Dyrep: Learning representations over dynamic graphs

R Trivedi, M Farajtabar, P Biswal, H Zha - International conference on …, 2019 - par.nsf.gov
Representation Learning over graph structured data has received significant attention
recently due to its ubiquitous applicability. However, most advancements have been made …

Representation learning for dynamic graphs: A survey

SM Kazemi, R Goel, K Jain, I Kobyzev, A Sethi… - Journal of Machine …, 2020 - jmlr.org
Graphs arise naturally in many real-world applications including social networks,
recommender systems, ontologies, biology, and computational finance. Traditionally …