A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection

M **, HY Koh, Q Wen, D Zambon… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Time series are the primary data type used to record dynamic system measurements and
generated in great volume by both physical sensors and online processes (virtual sensors) …

Spatio-temporal graph neural networks for predictive learning in urban computing: A survey

G **, Y Liang, Y Fang, Z Shao, J Huang… - … on Knowledge and …, 2023 - ieeexplore.ieee.org
With recent advances in sensing technologies, a myriad of spatio-temporal data has been
generated and recorded in smart cities. Forecasting the evolution patterns of spatio-temporal …

Deep learning for time series forecasting: Advances and open problems

A Casolaro, V Capone, G Iannuzzo, F Camastra - Information, 2023 - mdpi.com
A time series is a sequence of time-ordered data, and it is generally used to describe how a
phenomenon evolves over time. Time series forecasting, estimating future values of time …

Rethinking and scaling up graph contrastive learning: An extremely efficient approach with group discrimination

Y Zheng, S Pan, V Lee, Y Zheng… - Advances in Neural …, 2022 - proceedings.neurips.cc
Graph contrastive learning (GCL) alleviates the heavy reliance on label information for
graph representation learning (GRL) via self-supervised learning schemes. The core idea is …

Neural temporal walks: Motif-aware representation learning on continuous-time dynamic graphs

M **, YF Li, S Pan - Advances in Neural Information …, 2022 - proceedings.neurips.cc
Continuous-time dynamic graphs naturally abstract many real-world systems, such as social
and transactional networks. While the research on continuous-time dynamic graph …

Large models for time series and spatio-temporal data: A survey and outlook

M **, Q Wen, Y Liang, C Zhang, S Xue, X Wang… - arxiv preprint arxiv …, 2023 - arxiv.org
Temporal data, notably time series and spatio-temporal data, are prevalent in real-world
applications. They capture dynamic system measurements and are produced in vast …

Structure-free graph condensation: From large-scale graphs to condensed graph-free data

X Zheng, M Zhang, C Chen… - Advances in …, 2024 - proceedings.neurips.cc
Graph condensation, which reduces the size of a large-scale graph by synthesizing a small-
scale condensed graph as its substitution, has immediate benefits for various graph learning …

Finding the missing-half: Graph complementary learning for homophily-prone and heterophily-prone graphs

Y Zheng, H Zhang, V Lee, Y Zheng… - International …, 2023 - proceedings.mlr.press
Real-world graphs generally have only one kind of tendency in their connections. These
connections are either homophilic-prone or heterophily-prone. While graphs with homophily …

GPT-ST: generative pre-training of spatio-temporal graph neural networks

Z Li, L **a, Y Xu, C Huang - Advances in Neural Information …, 2024 - proceedings.neurips.cc
In recent years, there has been a rapid development of spatio-temporal prediction
techniques in response to the increasing demands of traffic management and travel …

Normalizing flow-based neural process for few-shot knowledge graph completion

L Luo, YF Li, G Haffari, S Pan - … of the 46th International ACM SIGIR …, 2023 - dl.acm.org
Knowledge graphs (KGs), as a structured form of knowledge representation, have been
widely applied in the real world. Recently, few-shot knowledge graph completion (FKGC) …