Dynamical state and parameter estimation

HDI Abarbanel, DR Creveling, R Farsian… - SIAM Journal on Applied …, 2009 - SIAM
We discuss the problem of determining unknown fixed parameters and unobserved state
variables in nonlinear models of a dynamical system using observed time series data from …

A self-organizing state-space-model approach for parameter estimation in Hodgkin-Huxley-type models of single neurons

DV Vavoulis, VA Straub, JAD Aston… - PLoS Computational …, 2012 - journals.plos.org
Traditional approaches to the problem of parameter estimation in biophysical models of
neurons and neural networks usually adopt a global search algorithm (for example, an …

Data assimilation with regularized nonlinear instabilities

HDI Abarbanel, M Kostuk… - Quarterly Journal of the …, 2010 - Wiley Online Library
In variational formulations of data assimilation, the estimation of parameters or initial state
values by a search for a minimum of a cost function can be hindered by the numerous local …

Identification of chaotic systems with hidden variables (modified Bock's algorithm)

BP Bezruchko, DA Smirnov, IV Sysoev - Chaos, Solitons & Fractals, 2006 - Elsevier
We address the problem of estimating parameters of chaotic dynamical systems from a time
series in a situation when some of state variables are not observed and/or the data are very …

The Fitzhugh-Nagumo model: Firing modes with time-varying parameters & parameter estimation

RT Faghih, K Savla, MA Dahleh… - … Conference of the IEEE …, 2010 - ieeexplore.ieee.org
In this paper, we revisit the issue of the utility of the FitzHugh-Nagumo (FHN) model for
capturing neuron firing behaviors. It has been noted (eg, see [6]) that the FHN model cannot …

State and parameter estimation for canonic models of neural oscillators

I Tyukin, E Steur, H Nijmeijer, D Fairhurst… - … journal of neural …, 2010 - World Scientific
We consider the problem of how to recover the state and parameter values of typical model
neurons, such as Hindmarsh-Rose, FitzHugh-Nagumo, Morris-Lecar, from in-vitro …

Bounded-Error Parameter Estimation Using Integro-Differential Equations for Hindmarsh–Rose Model

C Jauberthie, N Verdière - Algorithms, 2022 - mdpi.com
A numerical parameter estimation method, based on input-output integro-differential
polynomials in a bounded-error framework is investigated in this paper. More precisely, the …

Dynamical parameter and state estimation in neuron models

HDI Abarbanel, P Bryant, PE Gill… - The dynamic brain …, 2011 - books.google.com
In exploring networks of neurons, the electrophysiology of the nodes (the neurons) and the
links (synaptic or gap junction connections) provide two of the three essential ingredients for …

Broad range of neural dynamics from a time-varying FitzHugh–Nagumo model and its spiking threshold estimation

RT Faghih, K Savla, MA Dahleh… - IEEE transactions on …, 2011 - ieeexplore.ieee.org
We study the use of the FitzHugh-Nagumo (FHN) model for capturing neural spiking. The
FHN model is a widely used approximation of the Hodgkin-Huxley model that has significant …

Estimating the unmeasured membrane potential of neuronal populations from the EEG using a class of deterministic nonlinear filters

M Chong, R Postoyan, D Nešić… - Journal of neural …, 2012 - iopscience.iop.org
We present a model-based estimation method to reconstruct the unmeasured membrane
potential of neuronal populations from a single-channel electroencephalographic (EEG) …