Graph representation learning meets computer vision: A survey

L Jiao, J Chen, F Liu, S Yang, C You… - IEEE Transactions …, 2022 - ieeexplore.ieee.org
A graph structure is a powerful mathematical abstraction, which can not only represent
information about individuals but also capture the interactions between individuals for …

Hyperspectral image classification using graph convolutional network: A comprehensive review

G Wu, MAA Al-qaness, D Al-Alimi, A Dahou… - Expert Systems with …, 2024 - Elsevier
With the development of hyperspectral sensors, more and more hyperspectral images can
be acquired, and the pixel-oriented classification of hyperspectral images has attracted the …

Hyperspectral and LiDAR data classification based on structural optimization transmission

M Zhang, W Li, Y Zhang, R Tao… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
With the development of the sensor technology, complementary data of different sources can
be easily obtained for various applications. Despite the availability of adequate multisource …

Graph convolutional networks for hyperspectral image classification

D Hong, L Gao, J Yao, B Zhang, A Plaza… - … on Geoscience and …, 2020 - ieeexplore.ieee.org
Convolutional neural networks (CNNs) have been attracting increasing attention in
hyperspectral (HS) image classification due to their ability to capture spatial-spectral feature …

[HTML][HTML] A survey: Deep learning for hyperspectral image classification with few labeled samples

S Jia, S Jiang, Z Lin, N Li, M Xu, S Yu - Neurocomputing, 2021 - Elsevier
With the rapid development of deep learning technology and improvement in computing
capability, deep learning has been widely used in the field of hyperspectral image (HSI) …

Attention multihop graph and multiscale convolutional fusion network for hyperspectral image classification

H Zhou, F Luo, H Zhuang, Z Weng… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Convolutional neural networks (CNNs) for hyperspectral image (HSI) classification have
generated good progress. Meanwhile, graph convolutional networks (GCNs) have also …

Anomaly detection on attributed networks via contrastive self-supervised learning

Y Liu, Z Li, S Pan, C Gong, C Zhou… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Anomaly detection on attributed networks attracts considerable research interests due to
wide applications of attributed networks in modeling a wide range of complex systems …

MambaHSI: Spatial-spectral mamba for hyperspectral image classification

Y Li, Y Luo, L Zhang, Z Wang… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Transformer has been extensively explored for hyperspectral image (HSI) classification.
However, transformer poses challenges in terms of speed and memory usage because of its …

Hyperspectral image classification—Traditional to deep models: A survey for future prospects

M Ahmad, S Shabbir, SK Roy, D Hong… - IEEE journal of …, 2021 - ieeexplore.ieee.org
Hyperspectral imaging (HSI) has been extensively utilized in many real-life applications
because it benefits from the detailed spectral information contained in each pixel. Notably …

A semisupervised Siamese network for hyperspectral image classification

S Jia, S Jiang, Z Lin, M Xu, W Sun… - … on Geoscience and …, 2021 - ieeexplore.ieee.org
With the development of hyperspectral imaging technology, hyperspectral images (HSIs)
have become important when analyzing the class of ground objects. In recent years …