Machine learning and the physical sciences

G Carleo, I Cirac, K Cranmer, L Daudet, M Schuld… - Reviews of Modern …, 2019 - APS
Machine learning (ML) encompasses a broad range of algorithms and modeling tools used
for a vast array of data processing tasks, which has entered most scientific disciplines in …

A high-bias, low-variance introduction to machine learning for physicists

P Mehta, M Bukov, CH Wang, AGR Day, C Richardson… - Physics reports, 2019 - Elsevier
Abstract Machine Learning (ML) is one of the most exciting and dynamic areas of modern
research and application. The purpose of this review is to provide an introduction to the core …

Predicting many properties of a quantum system from very few measurements

HY Huang, R Kueng, J Preskill - Nature Physics, 2020 - nature.com
Predicting the properties of complex, large-scale quantum systems is essential for
develo** quantum technologies. We present an efficient method for constructing an …

Machine learning & artificial intelligence in the quantum domain: a review of recent progress

V Dunjko, HJ Briegel - Reports on Progress in Physics, 2018 - iopscience.iop.org
Quantum information technologies, on the one hand, and intelligent learning systems, on the
other, are both emergent technologies that are likely to have a transformative impact on our …

Neural-network quantum state tomography

G Torlai, G Mazzola, J Carrasquilla, M Troyer, R Melko… - Nature physics, 2018 - nature.com
The experimental realization of increasingly complex synthetic quantum systems calls for the
development of general theoretical methods to validate and fully exploit quantum resources …

Discovering physical concepts with neural networks

R Iten, T Metger, H Wilming, L Del Rio, R Renner - Physical review letters, 2020 - APS
Despite the success of neural networks at solving concrete physics problems, their use as a
general-purpose tool for scientific discovery is still in its infancy. Here, we approach this …

Quantum machine learning: from physics to software engineering

A Melnikov, M Kordzanganeh, A Alodjants… - Advances in Physics …, 2023 - Taylor & Francis
Quantum machine learning is a rapidly growing field at the intersection of quantum
technology and artificial intelligence. This review provides a two-fold overview of several key …

Artificial intelligence for science in quantum, atomistic, and continuum systems

X Zhang, L Wang, J Helwig, Y Luo, C Fu, Y **e… - arxiv preprint arxiv …, 2023 - arxiv.org
Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural
sciences. Today, AI has started to advance natural sciences by improving, accelerating, and …

Reconstructing quantum states with generative models

J Carrasquilla, G Torlai, RG Melko… - Nature Machine …, 2019 - nature.com
A major bottleneck in the development of scalable many-body quantum technologies is the
difficulty in benchmarking state preparations, which suffer from an exponential 'curse of …

Machine learning for quantum matter

J Carrasquilla - Advances in Physics: X, 2020 - Taylor & Francis
Quantum matter, the research field studying phases of matter whose properties are
intrinsically quantum mechanical, draws from areas as diverse as hard condensed matter …