A comprehensive survey on test-time adaptation under distribution shifts

J Liang, R He, T Tan - International Journal of Computer Vision, 2025 - Springer
Abstract Machine learning methods strive to acquire a robust model during the training
process that can effectively generalize to test samples, even in the presence of distribution …

A comprehensive survey on source-free domain adaptation

J Li, Z Yu, Z Du, L Zhu, HT Shen - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
Over the past decade, domain adaptation has become a widely studied branch of transfer
learning which aims to improve performance on target domains by leveraging knowledge …

Reusing the task-specific classifier as a discriminator: Discriminator-free adversarial domain adaptation

L Chen, H Chen, Z Wei, X **, X Tan… - Proceedings of the …, 2022 - openaccess.thecvf.com
Adversarial learning has achieved remarkable performances for unsupervised domain
adaptation (UDA). Existing adversarial UDA methods typically adopt an additional …

Generalized source-free domain adaptation

S Yang, Y Wang, J Van De Weijer… - Proceedings of the …, 2021 - openaccess.thecvf.com
Abstract Domain adaptation (DA) aims to transfer the knowledge learned from source
domain to an unlabeled target domain. Some recent works tackle source-free domain …

Cdtrans: Cross-domain transformer for unsupervised domain adaptation

T Xu, W Chen, P Wang, F Wang, H Li, R ** - arxiv preprint arxiv …, 2021 - arxiv.org
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled
source domain to a different unlabeled target domain. Most existing UDA methods focus on …

Attracting and dispersing: A simple approach for source-free domain adaptation

S Yang, S Jui, J Van De Weijer - Advances in Neural …, 2022 - proceedings.neurips.cc
We propose a simple but effective source-free domain adaptation (SFDA) method. Treating
SFDA as an unsupervised clustering problem and following the intuition that local neighbors …

Adaptive adversarial network for source-free domain adaptation

H **a, H Zhao, Z Ding - Proceedings of the IEEE/CVF …, 2021 - openaccess.thecvf.com
Abstract Unsupervised Domain Adaptation solves knowledge transfer along with the
coexistence of well-annotated source domain and unlabeled target instances. However, the …

Domain adaptation via prompt learning

C Ge, R Huang, M **e, Z Lai, S Song… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Unsupervised domain adaptation (UDA) aims to adapt models learned from a well-
annotated source domain to a target domain, where only unlabeled samples are given …

Patch-mix transformer for unsupervised domain adaptation: A game perspective

J Zhu, H Bai, L Wang - … of the IEEE/CVF conference on …, 2023 - openaccess.thecvf.com
Endeavors have been recently made to leverage the vision transformer (ViT) for the
challenging unsupervised domain adaptation (UDA) task. They typically adopt the cross …

Cross-domain gradient discrepancy minimization for unsupervised domain adaptation

Z Du, J Li, H Su, L Zhu, K Lu - Proceedings of the IEEE/CVF …, 2021 - openaccess.thecvf.com
Abstract Unsupervised Domain Adaptation (UDA) aims to generalize the knowledge learned
from a well-labeled source domain to an unlabled target domain. Recently, adversarial …