Large-scale multi-modal pre-trained models: A comprehensive survey
With the urgent demand for generalized deep models, many pre-trained big models are
proposed, such as bidirectional encoder representations (BERT), vision transformer (ViT) …
proposed, such as bidirectional encoder representations (BERT), vision transformer (ViT) …
Vlp: A survey on vision-language pre-training
In the past few years, the emergence of pre-training models has brought uni-modal fields
such as computer vision (CV) and natural language processing (NLP) to a new era …
such as computer vision (CV) and natural language processing (NLP) to a new era …
Visual instruction tuning
Instruction tuning large language models (LLMs) using machine-generated instruction-
following data has been shown to improve zero-shot capabilities on new tasks, but the idea …
following data has been shown to improve zero-shot capabilities on new tasks, but the idea …
[PDF][PDF] The dawn of lmms: Preliminary explorations with gpt-4v (ision)
Large multimodal models (LMMs) extend large language models (LLMs) with multi-sensory
skills, such as visual understanding, to achieve stronger generic intelligence. In this paper …
skills, such as visual understanding, to achieve stronger generic intelligence. In this paper …
Vid2seq: Large-scale pretraining of a visual language model for dense video captioning
In this work, we introduce Vid2Seq, a multi-modal single-stage dense event captioning
model pretrained on narrated videos which are readily-available at scale. The Vid2Seq …
model pretrained on narrated videos which are readily-available at scale. The Vid2Seq …
Multimodal learning with transformers: A survey
Transformer is a promising neural network learner, and has achieved great success in
various machine learning tasks. Thanks to the recent prevalence of multimodal applications …
various machine learning tasks. Thanks to the recent prevalence of multimodal applications …
Multimodal foundation models: From specialists to general-purpose assistants
Neural compression is the application of neural networks and other machine learning
methods to data compression. Recent advances in statistical machine learning have opened …
methods to data compression. Recent advances in statistical machine learning have opened …
Unified-io: A unified model for vision, language, and multi-modal tasks
We propose Unified-IO, a model that performs a large variety of AI tasks spanning classical
computer vision tasks, including pose estimation, object detection, depth estimation and …
computer vision tasks, including pose estimation, object detection, depth estimation and …
A-okvqa: A benchmark for visual question answering using world knowledge
Abstract The Visual Question Answering (VQA) task aspires to provide a meaningful testbed
for the development of AI models that can jointly reason over visual and natural language …
for the development of AI models that can jointly reason over visual and natural language …
Zero-shot video question answering via frozen bidirectional language models
Video question answering (VideoQA) is a complex task that requires diverse multi-modal
data for training. Manual annotation of question and answers for videos, however, is tedious …
data for training. Manual annotation of question and answers for videos, however, is tedious …