The rise and potential of large language model based agents: A survey

Z **, W Chen, X Guo, W He, Y Ding, B Hong… - Science China …, 2025 - Springer
For a long time, researchers have sought artificial intelligence (AI) that matches or exceeds
human intelligence. AI agents, which are artificial entities capable of sensing the …

A brief overview of ChatGPT: The history, status quo and potential future development

T Wu, S He, J Liu, S Sun, K Liu… - IEEE/CAA Journal of …, 2023 - ieeexplore.ieee.org
ChatGPT, an artificial intelligence generated content (AIGC) model developed by OpenAI,
has attracted world-wide attention for its capability of dealing with challenging language …

A survey on model compression for large language models

X Zhu, J Li, Y Liu, C Ma, W Wang - Transactions of the Association for …, 2024 - direct.mit.edu
Abstract Large Language Models (LLMs) have transformed natural language processing
tasks successfully. Yet, their large size and high computational needs pose challenges for …

A comprehensive survey of continual learning: theory, method and application

L Wang, X Zhang, H Su, J Zhu - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …

Metagpt: Meta programming for multi-agent collaborative framework

S Hong, X Zheng, J Chen, Y Cheng, J Wang… - arxiv preprint arxiv …, 2023 - arxiv.org
Recently, remarkable progress has been made in automated task-solving through the use of
multi-agent driven by large language models (LLMs). However, existing LLM-based multi …

Transformers learn in-context by gradient descent

J Von Oswald, E Niklasson… - International …, 2023 - proceedings.mlr.press
At present, the mechanisms of in-context learning in Transformers are not well understood
and remain mostly an intuition. In this paper, we suggest that training Transformers on auto …

[HTML][HTML] Model aggregation techniques in federated learning: A comprehensive survey

P Qi, D Chiaro, A Guzzo, M Ianni, G Fortino… - Future Generation …, 2024 - Elsevier
Federated learning (FL) is a distributed machine learning (ML) approach that enables
models to be trained on client devices while ensuring the privacy of user data. Model …

Prompt, generate, then cache: Cascade of foundation models makes strong few-shot learners

R Zhang, X Hu, B Li, S Huang… - Proceedings of the …, 2023 - openaccess.thecvf.com
Visual recognition in low-data regimes requires deep neural networks to learn generalized
representations from limited training samples. Recently, CLIP-based methods have shown …

Knowledge editing for large language models: A survey

S Wang, Y Zhu, H Liu, Z Zheng, C Chen, J Li - ACM Computing Surveys, 2024 - dl.acm.org
Large Language Models (LLMs) have recently transformed both the academic and industrial
landscapes due to their remarkable capacity to understand, analyze, and generate texts …

Transformers as statisticians: Provable in-context learning with in-context algorithm selection

Y Bai, F Chen, H Wang, C **ong… - Advances in neural …, 2024 - proceedings.neurips.cc
Neural sequence models based on the transformer architecture have demonstrated
remarkable\emph {in-context learning}(ICL) abilities, where they can perform new tasks …