Heterogeneous federated learning: State-of-the-art and research challenges

M Ye, X Fang, B Du, PC Yuen, D Tao - ACM Computing Surveys, 2023 - dl.acm.org
Federated learning (FL) has drawn increasing attention owing to its potential use in large-
scale industrial applications. Existing FL works mainly focus on model homogeneous …

Enhancing generalization in federated learning with heterogeneous data: A comparative literature review

A Mora, A Bujari, P Bellavista - Future Generation Computer Systems, 2024 - Elsevier
Federated Learning (FL) is a collaborative training paradigm whereby a global Machine
Learning (ML) model is trained using typically private and distributed data sources without …

Fedfed: Feature distillation against data heterogeneity in federated learning

Z Yang, Y Zhang, Y Zheng, X Tian… - Advances in …, 2023 - proceedings.neurips.cc
Federated learning (FL) typically faces data heterogeneity, ie, distribution shifting among
clients. Sharing clients' information has shown great potentiality in mitigating data …

Federated learning for generalization, robustness, fairness: A survey and benchmark

W Huang, M Ye, Z Shi, G Wan, H Li… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Federated learning has emerged as a promising paradigm for privacy-preserving
collaboration among different parties. Recently, with the popularity of federated learning, an …

Rethinking the learning paradigm for dynamic facial expression recognition

H Wang, B Li, S Wu, S Shen, F Liu… - Proceedings of the …, 2023 - openaccess.thecvf.com
Abstract Dynamic Facial Expression Recognition (DFER) is a rapidly develo** field that
focuses on recognizing facial expressions in video format. Previous research has …

Target: Federated class-continual learning via exemplar-free distillation

J Zhang, C Chen, W Zhuang… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
This paper focuses on an under-explored yet important problem: Federated Class-Continual
Learning (FCCL), where new classes are dynamically added in federated learning. Existing …

Dense: Data-free one-shot federated learning

J Zhang, C Chen, B Li, L Lyu, S Wu… - Advances in …, 2022 - proceedings.neurips.cc
Abstract One-shot Federated Learning (FL) has recently emerged as a promising approach,
which allows the central server to learn a model in a single communication round. Despite …

Generalizable heterogeneous federated cross-correlation and instance similarity learning

W Huang, M Ye, Z Shi, B Du - IEEE Transactions on Pattern …, 2023 - ieeexplore.ieee.org
Federated learning is an important privacy-preserving multi-party learning paradigm,
involving collaborative learning with others and local updating on private data. Model …

No fear of classifier biases: Neural collapse inspired federated learning with synthetic and fixed classifier

Z Li, X Shang, R He, T Lin… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Data heterogeneity is an inherent challenge that hinders the performance of federated
learning (FL). Recent studies have identified the biased classifiers of local models as the key …

HiFlash: Communication-efficient hierarchical federated learning with adaptive staleness control and heterogeneity-aware client-edge association

Q Wu, X Chen, T Ouyang, Z Zhou… - … on Parallel and …, 2023 - ieeexplore.ieee.org
Federated learning (FL) is a promising paradigm that enables collaboratively learning a
shared model across massive clients while kee** the training data locally. However, for …