Towards More Trustworthy and Interpretable LLMs for Code through Syntax-Grounded Explanations

DN Palacio, D Rodriguez-Cardenas, A Velasco… - arxiv preprint arxiv …, 2024 - arxiv.org
Trustworthiness and interpretability are inextricably linked concepts for LLMs. The more
interpretable an LLM is, the more trustworthy it becomes. However, current techniques for …

Transformer-based approaches to sentiment detection

OE Ojo, HT Ta, A Gelbukh, H Calvo… - … Developments and the …, 2023 - Springer
The use of transfer learning methods is largely responsible for the present breakthrough in
Natural Learning Processing (NLP) tasks across multiple domains. In order to solve the …

Which Syntactic Capabilities Are Statistically Learned by Masked Language Models for Code?

A Velasco, DN Palacio… - Proceedings of the …, 2024 - dl.acm.org
This paper discusses the limitations of evaluating Masked Language Models (MLMs) in
code completion tasks. We highlight that relying on accuracy-based measurements may …

Beyond Accuracy: Evaluating Source Code Capabilities in Large Language Models for Software Engineering

A Velasco - Proceedings of the 2024 IEEE/ACM 46th International …, 2024 - dl.acm.org
This dissertation aims to introduce interpretability techniques to comprehensively evaluate
the performance of Large Language Models (LLMs) in software engineering tasks, beyond …

Transformer-Based Approaches to Sentiment Detection Check for updates Olumide Ebenezer Ojo, Hoang Thang Ta®, Alexander Gelbukh, Hiram Calvo, Olaronke …

H Calvo - Recent Developments and the New Directions of …, 2023 - books.google.com
The use of transfer learning methods is largely responsible for the present breakthrough in
Natural Learning Processing (NLP) tasks across multiple domains. In order to solve the …

[PDF][PDF] LLM による慣用句の言語間翻訳を用いたコード入力の支援

宮原和也, 山崎徹郎, 千葉滋 - 情報処理学会論文誌 …, 2024 - static.csg.ci.iu-tokyo.ac.jp
複数言語を使い分けて開発する環境では, 言語間の慣用句の違いによってプログラマが混乱する
ことがあるため, 異言語の慣用句の使用を認識して, その修**候補を提示する入力支援の開発が …