Quantum error mitigation
For quantum computers to successfully solve real-world problems, it is necessary to tackle
the challenge of noise: the errors that occur in elementary physical components due to …
the challenge of noise: the errors that occur in elementary physical components due to …
Quantum repeaters: From quantum networks to the quantum internet
A quantum internet is the holy grail of quantum information processing, enabling the
deployment of a broad range of quantum technologies and protocols on a global scale …
deployment of a broad range of quantum technologies and protocols on a global scale …
Logical quantum processor based on reconfigurable atom arrays
Suppressing errors is the central challenge for useful quantum computing, requiring
quantum error correction (QEC),,,–for large-scale processing. However, the overhead in the …
quantum error correction (QEC),,,–for large-scale processing. However, the overhead in the …
Realizing repeated quantum error correction in a distance-three surface code
Quantum computers hold the promise of solving computational problems that are intractable
using conventional methods. For fault-tolerant operation, quantum computers must correct …
using conventional methods. For fault-tolerant operation, quantum computers must correct …
High-fidelity parallel entangling gates on a neutral-atom quantum computer
The ability to perform entangling quantum operations with low error rates in a scalable
fashion is a central element of useful quantum information processing. Neutral-atom arrays …
fashion is a central element of useful quantum information processing. Neutral-atom arrays …
Suppressing quantum errors by scaling a surface code logical qubit
Nature, 2023 - nature.com
Practical quantum computing will require error rates well below those achievable with
physical qubits. Quantum error correction, offers a path to algorithmically relevant error rates …
physical qubits. Quantum error correction, offers a path to algorithmically relevant error rates …
A quantum processor based on coherent transport of entangled atom arrays
The ability to engineer parallel, programmable operations between desired qubits within a
quantum processor is key for building scalable quantum information systems,. In most state …
quantum processor is key for building scalable quantum information systems,. In most state …
Real-time quantum error correction beyond break-even
The ambition of harnessing the quantum for computation is at odds with the fundamental
phenomenon of decoherence. The purpose of quantum error correction (QEC) is to …
phenomenon of decoherence. The purpose of quantum error correction (QEC) is to …
Universal control of a six-qubit quantum processor in silicon
Future quantum computers capable of solving relevant problems will require a large number
of qubits that can be operated reliably. However, the requirements of having a large qubit …
of qubits that can be operated reliably. However, the requirements of having a large qubit …
Demonstration of fault-tolerant universal quantum gate operations
Quantum computers can be protected from noise by encoding the logical quantum
information redundantly into multiple qubits using error-correcting codes,. When …
information redundantly into multiple qubits using error-correcting codes,. When …