Deep inference for covariance estimation: Learning gaussian noise models for state estimation

K Liu, K Ok, W Vega-Brown… - 2018 IEEE International …, 2018 - ieeexplore.ieee.org
We present a novel method of measurement covariance estimation that models
measurement uncertainty as a function of the measurement itself. Existing work in predictive …

Nonparametric Bayesian inference on multivariate exponential families

WR Vega-Brown, M Doniec… - Advances in Neural …, 2014 - proceedings.neurips.cc
We develop a model by choosing the maximum entropy distribution from the set of models
satisfying certain smoothness and independence criteria; we show that inference on this …

Learning Gaussisan noise models from high-dimensional sensor data with deep neural networks

KY Liu - 2018 - dspace.mit.edu
While measurement covariances are often taken to be constant in many robotic state
estimation systems, many sensors exhibit different interactions with their environment …

Probabilistic graphical models: distributed inference and learning models with small feedback vertex sets

Y Liu - 2014 - dspace.mit.edu
In undirected graphical models, each node represents a random variable while the set of
edges specifies the conditional independencies of the underlying distribution. When the …

Reconstruction 3D d'environnements intérieurs à partir d'acquisitions LiDAR

J Sanchez - 2020 - theses.hal.science
Ce travail de thèse porte sur la reconstruction 3D d'environnements structurés à partir
d'acquisitions LiDAR. L'étude a pour but d'automatiser et d'améliorer la chaîne de …