A systematic review on overfitting control in shallow and deep neural networks

MM Bejani, M Ghatee - Artificial Intelligence Review, 2021 - Springer
Shallow neural networks process the features directly, while deep networks extract features
automatically along with the training. Both models suffer from overfitting or poor …

Review of deep learning: concepts, CNN architectures, challenges, applications, future directions

L Alzubaidi, J Zhang, AJ Humaidi, A Al-Dujaili… - Journal of big Data, 2021 - Springer
In the last few years, the deep learning (DL) computing paradigm has been deemed the
Gold Standard in the machine learning (ML) community. Moreover, it has gradually become …

Attention bottlenecks for multimodal fusion

A Nagrani, S Yang, A Arnab, A Jansen… - Advances in neural …, 2021 - proceedings.neurips.cc
Humans perceive the world by concurrently processing and fusing high-dimensional inputs
from multiple modalities such as vision and audio. Machine perception models, in stark …

[HTML][HTML] BirdNET: A deep learning solution for avian diversity monitoring

S Kahl, CM Wood, M Eibl, H Klinck - Ecological Informatics, 2021 - Elsevier
Variation in avian diversity in space and time is commonly used as a metric to assess
environmental changes. Conventionally, such data were collected by expert observers, but …

Audioclip: Extending clip to image, text and audio

A Guzhov, F Raue, J Hees… - ICASSP 2022-2022 IEEE …, 2022 - ieeexplore.ieee.org
The rapidly evolving field of sound classification has greatly benefited from the methods of
other domains. Today, the trend is to fuse domain-specific tasks and approaches together …

Fsd50k: an open dataset of human-labeled sound events

E Fonseca, X Favory, J Pons, F Font… - IEEE/ACM Transactions …, 2021 - ieeexplore.ieee.org
Most existing datasets for sound event recognition (SER) are relatively small and/or domain-
specific, with the exception of AudioSet, based on over 2 M tracks from YouTube videos and …

[HTML][HTML] A survey of sound source localization with deep learning methods

PA Grumiaux, S Kitić, L Girin, A Guérin - The Journal of the Acoustical …, 2022 - pubs.aip.org
This article is a survey of deep learning methods for single and multiple sound source
localization, with a focus on sound source localization in indoor environments, where …

Reinforcement learning in healthcare: A survey

C Yu, J Liu, S Nemati, G Yin - ACM Computing Surveys (CSUR), 2021 - dl.acm.org
As a subfield of machine learning, reinforcement learning (RL) aims at optimizing decision
making by using interaction samples of an agent with its environment and the potentially …

A sco** review of transfer learning research on medical image analysis using ImageNet

MA Morid, A Borjali, G Del Fiol - Computers in biology and medicine, 2021 - Elsevier
Objective Employing transfer learning (TL) with convolutional neural networks (CNNs), well-
trained on non-medical ImageNet dataset, has shown promising results for medical image …

Reinforcement learning for intelligent healthcare applications: A survey

A Coronato, M Naeem, G De Pietro… - Artificial intelligence in …, 2020 - Elsevier
Discovering new treatments and personalizing existing ones is one of the major goals of
modern clinical research. In the last decade, Artificial Intelligence (AI) has enabled the …