Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art

M Karimi-Mamaghan, M Mohammadi, P Meyer… - European Journal of …, 2022 - Elsevier
In recent years, there has been a growing research interest in integrating machine learning
techniques into meta-heuristics for solving combinatorial optimization problems. This …

A review of reinforcement learning based intelligent optimization for manufacturing scheduling

L Wang, Z Pan, J Wang - Complex System Modeling and …, 2021 - ieeexplore.ieee.org
As the critical component of manufacturing systems, production scheduling aims to optimize
objectives in terms of profit, efficiency, and energy consumption by reasonably determining …

A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem

K Lei, P Guo, W Zhao, Y Wang, L Qian, X Meng… - Expert Systems with …, 2022 - Elsevier
This paper presents an end-to-end deep reinforcement framework to automatically learn a
policy for solving a flexible Job-shop scheduling problem (FJSP) using a graph neural …

Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities

Y Yan, AHF Chow, CP Ho, YH Kuo, Q Wu… - … Research Part E …, 2022 - Elsevier
With advances in technologies, data science techniques, and computing equipment, there
has been rapidly increasing interest in the applications of reinforcement learning (RL) to …

A review of cooperative multi-agent deep reinforcement learning

A Oroojlooy, D Ha**ezhad - Applied Intelligence, 2023 - Springer
Abstract Deep Reinforcement Learning has made significant progress in multi-agent
systems in recent years. The aim of this review article is to provide an overview of recent …

[PDF][PDF] Theoretical approaches to AI in supply chain optimization: Pathways to efficiency and resilience

EA Abaku, TE Edunjobi… - International Journal of …, 2024 - pdfs.semanticscholar.org
Abstract The integration of Artificial Intelligence (AI) into supply chain management has
emerged as a pivotal avenue for enhancing efficiency and resilience in contemporary …

A review of cooperative multi-agent deep reinforcement learning

A OroojlooyJadid, D Ha**ezhad - arxiv preprint arxiv:1908.03963, 2019 - arxiv.org
Deep Reinforcement Learning has made significant progress in multi-agent systems in
recent years. In this review article, we have focused on presenting recent approaches on …

Deep reinforcement learning for the dynamic and uncertain vehicle routing problem

W Pan, SQ Liu - Applied Intelligence, 2023 - Springer
Accurate and real-time tracking for real-world urban logistics has become a popular
research topic in the field of intelligent transportation. While the routing of urban logistic …

A reinforcement learning-variable neighborhood search method for the capacitated vehicle routing problem

P Kalatzantonakis, A Sifaleras, N Samaras - Expert Systems with …, 2023 - Elsevier
Finding the best sequence of local search operators that yields the optimal performance of
Variable Neighborhood Search (VNS) is an important open research question in the field of …

Machine learning to solve vehicle routing problems: A survey

A Bogyrbayeva, M Meraliyev… - IEEE Transactions …, 2024 - ieeexplore.ieee.org
This paper provides a systematic overview of machine learning methods applied to solve NP-
hard Vehicle Routing Problems (VRPs). Recently, there has been great interest from both …