Towards data-centric graph machine learning: Review and outlook
Data-centric AI, with its primary focus on the collection, management, and utilization of data
to drive AI models and applications, has attracted increasing attention in recent years. In this …
to drive AI models and applications, has attracted increasing attention in recent years. In this …
Data augmentation for deep graph learning: A survey
Graph neural networks, a powerful deep learning tool to model graph-structured data, have
demonstrated remarkable performance on numerous graph learning tasks. To address the …
demonstrated remarkable performance on numerous graph learning tasks. To address the …
A survey of mix-based data augmentation: Taxonomy, methods, applications, and explainability
Data augmentation (DA) is indispensable in modern machine learning and deep neural
networks. The basic idea of DA is to construct new training data to improve the model's …
networks. The basic idea of DA is to construct new training data to improve the model's …
G-mixup: Graph data augmentation for graph classification
This work develops mixup for graph data. Mixup has shown superiority in improving the
generalization and robustness of neural networks by interpolating features and labels …
generalization and robustness of neural networks by interpolating features and labels …
Unleashing the power of graph data augmentation on covariate distribution shift
The issue of distribution shifts is emerging as a critical concern in graph representation
learning. From the perspective of invariant learning and stable learning, a recently well …
learning. From the perspective of invariant learning and stable learning, a recently well …
Hard sample aware network for contrastive deep graph clustering
Contrastive deep graph clustering, which aims to divide nodes into disjoint groups via
contrastive mechanisms, is a challenging research spot. Among the recent works, hard …
contrastive mechanisms, is a challenging research spot. Among the recent works, hard …
Good: A graph out-of-distribution benchmark
Abstract Out-of-distribution (OOD) learning deals with scenarios in which training and test
data follow different distributions. Although general OOD problems have been intensively …
data follow different distributions. Although general OOD problems have been intensively …
Cluster-guided contrastive graph clustering network
Benefiting from the intrinsic supervision information exploitation capability, contrastive
learning has achieved promising performance in the field of deep graph clustering recently …
learning has achieved promising performance in the field of deep graph clustering recently …
Graph data augmentation for graph machine learning: A survey
Data augmentation has recently seen increased interest in graph machine learning given its
demonstrated ability to improve model performance and generalization by added training …
demonstrated ability to improve model performance and generalization by added training …
Out-of-distribution generalization on graphs: A survey
Graph machine learning has been extensively studied in both academia and industry.
Although booming with a vast number of emerging methods and techniques, most of the …
Although booming with a vast number of emerging methods and techniques, most of the …