On the implicit bias in deep-learning algorithms

G Vardi - Communications of the ACM, 2023 - dl.acm.org
On the Implicit Bias in Deep-Learning Algorithms Page 1 DEEP LEARNING HAS been highly
successful in recent years and has led to dramatic improvements in multiple domains …

[HTML][HTML] Integrative benchmarking to advance neurally mechanistic models of human intelligence

M Schrimpf, J Kubilius, MJ Lee, NAR Murty, R Ajemian… - Neuron, 2020 - cell.com
A potentially organizing goal of the brain and cognitive sciences is to accurately explain
domains of human intelligence as executable, neurally mechanistic models. Years of …

A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications

L Alzubaidi, J Bai, A Al-Sabaawi, J Santamaría… - Journal of Big Data, 2023 - Springer
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a
large amount of data to achieve exceptional performance. Unfortunately, many applications …

Provable guarantees for self-supervised deep learning with spectral contrastive loss

JZ HaoChen, C Wei, A Gaidon… - Advances in neural …, 2021 - proceedings.neurips.cc
Recent works in self-supervised learning have advanced the state-of-the-art by relying on
the contrastive learning paradigm, which learns representations by pushing positive pairs, or …

Deep learning: a statistical viewpoint

PL Bartlett, A Montanari, A Rakhlin - Acta numerica, 2021 - cambridge.org
The remarkable practical success of deep learning has revealed some major surprises from
a theoretical perspective. In particular, simple gradient methods easily find near-optimal …

Benign overfitting in linear regression

PL Bartlett, PM Long, G Lugosi, A Tsigler - Proceedings of the National …, 2020 - pnas.org
The phenomenon of benign overfitting is one of the key mysteries uncovered by deep
learning methodology: deep neural networks seem to predict well, even with a perfect fit to …

[HTML][HTML] Combined scaling for zero-shot transfer learning

H Pham, Z Dai, G Ghiasi, K Kawaguchi, H Liu, AW Yu… - Neurocomputing, 2023 - Elsevier
Recent developments in multimodal training methodologies, including CLIP and ALIGN,
obviate the necessity for individual data labeling. These approaches utilize pairs of data and …

The modern mathematics of deep learning

J Berner, P Grohs, G Kutyniok… - arxiv preprint arxiv …, 2021 - cambridge.org
We describe the new field of the mathematical analysis of deep learning. This field emerged
around a list of research questions that were not answered within the classical framework of …

A theoretical analysis of deep Q-learning

J Fan, Z Wang, Y **e, Z Yang - Learning for dynamics and …, 2020 - proceedings.mlr.press
Despite the great empirical success of deep reinforcement learning, its theoretical
foundation is less well understood. In this work, we make the first attempt to theoretically …

Learning and generalization in overparameterized neural networks, going beyond two layers

Z Allen-Zhu, Y Li, Y Liang - Advances in neural information …, 2019 - proceedings.neurips.cc
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Page 1 Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two …