Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
On the implicit bias in deep-learning algorithms
G Vardi - Communications of the ACM, 2023 - dl.acm.org
On the Implicit Bias in Deep-Learning Algorithms Page 1 DEEP LEARNING HAS been highly
successful in recent years and has led to dramatic improvements in multiple domains …
successful in recent years and has led to dramatic improvements in multiple domains …
[HTML][HTML] Integrative benchmarking to advance neurally mechanistic models of human intelligence
A potentially organizing goal of the brain and cognitive sciences is to accurately explain
domains of human intelligence as executable, neurally mechanistic models. Years of …
domains of human intelligence as executable, neurally mechanistic models. Years of …
A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a
large amount of data to achieve exceptional performance. Unfortunately, many applications …
large amount of data to achieve exceptional performance. Unfortunately, many applications …
Provable guarantees for self-supervised deep learning with spectral contrastive loss
Recent works in self-supervised learning have advanced the state-of-the-art by relying on
the contrastive learning paradigm, which learns representations by pushing positive pairs, or …
the contrastive learning paradigm, which learns representations by pushing positive pairs, or …
Deep learning: a statistical viewpoint
The remarkable practical success of deep learning has revealed some major surprises from
a theoretical perspective. In particular, simple gradient methods easily find near-optimal …
a theoretical perspective. In particular, simple gradient methods easily find near-optimal …
Benign overfitting in linear regression
The phenomenon of benign overfitting is one of the key mysteries uncovered by deep
learning methodology: deep neural networks seem to predict well, even with a perfect fit to …
learning methodology: deep neural networks seem to predict well, even with a perfect fit to …
[HTML][HTML] Combined scaling for zero-shot transfer learning
Recent developments in multimodal training methodologies, including CLIP and ALIGN,
obviate the necessity for individual data labeling. These approaches utilize pairs of data and …
obviate the necessity for individual data labeling. These approaches utilize pairs of data and …
The modern mathematics of deep learning
We describe the new field of the mathematical analysis of deep learning. This field emerged
around a list of research questions that were not answered within the classical framework of …
around a list of research questions that were not answered within the classical framework of …
A theoretical analysis of deep Q-learning
Despite the great empirical success of deep reinforcement learning, its theoretical
foundation is less well understood. In this work, we make the first attempt to theoretically …
foundation is less well understood. In this work, we make the first attempt to theoretically …
Learning and generalization in overparameterized neural networks, going beyond two layers
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Page 1 Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two …
Page 1 Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two …