[HTML][HTML] The variational quantum eigensolver: a review of methods and best practices

J Tilly, H Chen, S Cao, D Picozzi, K Setia, Y Li, E Grant… - Physics Reports, 2022 - Elsevier
The variational quantum eigensolver (or VQE), first developed by Peruzzo et al.(2014), has
received significant attention from the research community in recent years. It uses the …

Noisy intermediate-scale quantum algorithms

K Bharti, A Cervera-Lierta, TH Kyaw, T Haug… - Reviews of Modern …, 2022 - APS
A universal fault-tolerant quantum computer that can efficiently solve problems such as
integer factorization and unstructured database search requires millions of qubits with low …

Empowering deep neural quantum states through efficient optimization

A Chen, M Heyl - Nature Physics, 2024 - nature.com
Computing the ground state of interacting quantum matter is a long-standing challenge,
especially for complex two-dimensional systems. Recent developments have highlighted the …

Artificial intelligence for science in quantum, atomistic, and continuum systems

X Zhang, L Wang, J Helwig, Y Luo, C Fu, Y **e… - arxiv preprint arxiv …, 2023 - arxiv.org
Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural
sciences. Today, AI has started to advance natural sciences by improving, accelerating, and …

Provably efficient machine learning for quantum many-body problems

HY Huang, R Kueng, G Torlai, VV Albert, J Preskill - Science, 2022 - science.org
Classical machine learning (ML) provides a potentially powerful approach to solving
challenging quantum many-body problems in physics and chemistry. However, the …

Ab initio quantum chemistry with neural-network wavefunctions

J Hermann, J Spencer, K Choo, A Mezzacapo… - Nature Reviews …, 2023 - nature.com
Deep learning methods outperform human capabilities in pattern recognition and data
processing problems and now have an increasingly important role in scientific discovery. A …

Machine learning and the physical sciences

G Carleo, I Cirac, K Cranmer, L Daudet, M Schuld… - Reviews of Modern …, 2019 - APS
Machine learning (ML) encompasses a broad range of algorithms and modeling tools used
for a vast array of data processing tasks, which has entered most scientific disciplines in …

Ab initio solution of the many-electron Schrödinger equation with deep neural networks

D Pfau, JS Spencer, AGDG Matthews… - Physical review research, 2020 - APS
Given access to accurate solutions of the many-electron Schrödinger equation, nearly all
chemistry could be derived from first principles. Exact wave functions of interesting chemical …

Machine learning for electronically excited states of molecules

J Westermayr, P Marquetand - Chemical Reviews, 2020 - ACS Publications
Electronically excited states of molecules are at the heart of photochemistry, photophysics,
as well as photobiology and also play a role in material science. Their theoretical description …

Exploring QCD matter in extreme conditions with Machine Learning

K Zhou, L Wang, LG Pang, S Shi - Progress in Particle and Nuclear Physics, 2024 - Elsevier
In recent years, machine learning has emerged as a powerful computational tool and novel
problem-solving perspective for physics, offering new avenues for studying strongly …