Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
[HTML][HTML] The variational quantum eigensolver: a review of methods and best practices
The variational quantum eigensolver (or VQE), first developed by Peruzzo et al.(2014), has
received significant attention from the research community in recent years. It uses the …
received significant attention from the research community in recent years. It uses the …
Noisy intermediate-scale quantum algorithms
A universal fault-tolerant quantum computer that can efficiently solve problems such as
integer factorization and unstructured database search requires millions of qubits with low …
integer factorization and unstructured database search requires millions of qubits with low …
Empowering deep neural quantum states through efficient optimization
Computing the ground state of interacting quantum matter is a long-standing challenge,
especially for complex two-dimensional systems. Recent developments have highlighted the …
especially for complex two-dimensional systems. Recent developments have highlighted the …
Artificial intelligence for science in quantum, atomistic, and continuum systems
Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural
sciences. Today, AI has started to advance natural sciences by improving, accelerating, and …
sciences. Today, AI has started to advance natural sciences by improving, accelerating, and …
Provably efficient machine learning for quantum many-body problems
Classical machine learning (ML) provides a potentially powerful approach to solving
challenging quantum many-body problems in physics and chemistry. However, the …
challenging quantum many-body problems in physics and chemistry. However, the …
Ab initio quantum chemistry with neural-network wavefunctions
Deep learning methods outperform human capabilities in pattern recognition and data
processing problems and now have an increasingly important role in scientific discovery. A …
processing problems and now have an increasingly important role in scientific discovery. A …
Machine learning and the physical sciences
Machine learning (ML) encompasses a broad range of algorithms and modeling tools used
for a vast array of data processing tasks, which has entered most scientific disciplines in …
for a vast array of data processing tasks, which has entered most scientific disciplines in …
Ab initio solution of the many-electron Schrödinger equation with deep neural networks
Given access to accurate solutions of the many-electron Schrödinger equation, nearly all
chemistry could be derived from first principles. Exact wave functions of interesting chemical …
chemistry could be derived from first principles. Exact wave functions of interesting chemical …
Machine learning for electronically excited states of molecules
Electronically excited states of molecules are at the heart of photochemistry, photophysics,
as well as photobiology and also play a role in material science. Their theoretical description …
as well as photobiology and also play a role in material science. Their theoretical description …
Exploring QCD matter in extreme conditions with Machine Learning
In recent years, machine learning has emerged as a powerful computational tool and novel
problem-solving perspective for physics, offering new avenues for studying strongly …
problem-solving perspective for physics, offering new avenues for studying strongly …