Financial time series forecasting with deep learning: A systematic literature review: 2005–2019

OB Sezer, MU Gudelek, AM Ozbayoglu - Applied soft computing, 2020 - Elsevier
Financial time series forecasting is undoubtedly the top choice of computational intelligence
for finance researchers in both academia and the finance industry due to its broad …

Applications of deep learning in stock market prediction: recent progress

W Jiang - Expert Systems with Applications, 2021 - Elsevier
Stock market prediction has been a classical yet challenging problem, with the attention from
both economists and computer scientists. With the purpose of building an effective prediction …

Frequency-domain MLPs are more effective learners in time series forecasting

K Yi, Q Zhang, W Fan, S Wang… - Advances in …, 2024 - proceedings.neurips.cc
Time series forecasting has played the key role in different industrial, including finance,
traffic, energy, and healthcare domains. While existing literatures have designed many …

Spectral temporal graph neural network for multivariate time-series forecasting

D Cao, Y Wang, J Duan, C Zhang… - Advances in neural …, 2020 - proceedings.neurips.cc
Multivariate time-series forecasting plays a crucial role in many real-world applications. It is
a challenging problem as one needs to consider both intra-series temporal correlations and …

Deep learning for financial applications: A survey

AM Ozbayoglu, MU Gudelek, OB Sezer - Applied soft computing, 2020 - Elsevier
Computational intelligence in finance has been a very popular topic for both academia and
financial industry in the last few decades. Numerous studies have been published resulting …

FourierGNN: Rethinking multivariate time series forecasting from a pure graph perspective

K Yi, Q Zhang, W Fan, H He, L Hu… - Advances in …, 2024 - proceedings.neurips.cc
Multivariate time series (MTS) forecasting has shown great importance in numerous
industries. Current state-of-the-art graph neural network (GNN)-based forecasting methods …

[BOK][B] Neural networks and deep learning

CC Aggarwal - 2018 - Springer
“Any AI smart enough to pass a Turing test is smart enough to know to fail it.”–*** Ian
McDonald Neural networks were developed to simulate the human nervous system for …

A systematic review of deep transfer learning for machinery fault diagnosis

C Li, S Zhang, Y Qin, E Estupinan - Neurocomputing, 2020 - Elsevier
With the popularization of the intelligent manufacturing, much attention has been paid in
such intelligent computing methods as deep learning ones for machinery fault diagnosis …

A comprehensive survey on deep neural networks for stock market: The need, challenges, and future directions

A Thakkar, K Chaudhari - Expert Systems with Applications, 2021 - Elsevier
The stock market has been an attractive field for a large number of organizers and investors
to derive useful predictions. Fundamental knowledge of stock market can be utilised with …

Temporal relational ranking for stock prediction

F Feng, X He, X Wang, C Luo, Y Liu… - ACM Transactions on …, 2019 - dl.acm.org
Stock prediction aims to predict the future trends of a stock in order to help investors make
good investment decisions. Traditional solutions for stock prediction are based on time …