Retrieval-augmented generation for large language models: A survey

Y Gao, Y **ong, X Gao, K Jia, J Pan, Y Bi, Y Dai… - arxiv preprint arxiv …, 2023 - arxiv.org
Large language models (LLMs) demonstrate powerful capabilities, but they still face
challenges in practical applications, such as hallucinations, slow knowledge updates, and …

[HTML][HTML] Data augmentation approaches in natural language processing: A survey

B Li, Y Hou, W Che - Ai Open, 2022 - Elsevier
As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where
deep learning techniques may fail. It is widely applied in computer vision then introduced to …

In-context retrieval-augmented language models

O Ram, Y Levine, I Dalmedigos, D Muhlgay… - Transactions of the …, 2023 - direct.mit.edu
Abstract Retrieval-Augmented Language Modeling (RALM) methods, which condition a
language model (LM) on relevant documents from a grounding corpus during generation …

Augmented language models: a survey

G Mialon, R Dessì, M Lomeli, C Nalmpantis… - arxiv preprint arxiv …, 2023 - arxiv.org
This survey reviews works in which language models (LMs) are augmented with reasoning
skills and the ability to use tools. The former is defined as decomposing a potentially …

Leandojo: Theorem proving with retrieval-augmented language models

K Yang, A Swope, A Gu, R Chalamala… - Advances in …, 2024 - proceedings.neurips.cc
Large language models (LLMs) have shown promise in proving formal theorems using proof
assistants such as Lean. However, existing methods are difficult to reproduce or build on …

Trustllm: Trustworthiness in large language models

Y Huang, L Sun, H Wang, S Wu, Q Zhang, Y Li… - arxiv preprint arxiv …, 2024 - arxiv.org
Large language models (LLMs), exemplified by ChatGPT, have gained considerable
attention for their excellent natural language processing capabilities. Nonetheless, these …

A survey on rag meeting llms: Towards retrieval-augmented large language models

W Fan, Y Ding, L Ning, S Wang, H Li, D Yin… - Proceedings of the 30th …, 2024 - dl.acm.org
As one of the most advanced techniques in AI, Retrieval-Augmented Generation (RAG) can
offer reliable and up-to-date external knowledge, providing huge convenience for numerous …

A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions

L Huang, W Yu, W Ma, W Zhong, Z Feng… - ACM Transactions on …, 2024 - dl.acm.org
The emergence of large language models (LLMs) has marked a significant breakthrough in
natural language processing (NLP), fueling a paradigm shift in information acquisition …

Text-to-image diffusion models in generative ai: A survey

C Zhang, C Zhang, M Zhang, IS Kweon - arxiv preprint arxiv:2303.07909, 2023 - arxiv.org
This survey reviews text-to-image diffusion models in the context that diffusion models have
emerged to be popular for a wide range of generative tasks. As a self-contained work, this …

Taxonomy of risks posed by language models

L Weidinger, J Uesato, M Rauh, C Griffin… - Proceedings of the …, 2022 - dl.acm.org
Responsible innovation on large-scale Language Models (LMs) requires foresight into and
in-depth understanding of the risks these models may pose. This paper develops a …