Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges
As the research on artificial intelligence booms, there is broad interest in brain‐inspired
computing using novel neuromorphic devices. The potential of various emerging materials …
computing using novel neuromorphic devices. The potential of various emerging materials …
Deep learning in spiking neural networks
A Tavanaei, M Ghodrati, SR Kheradpisheh… - Neural networks, 2019 - Elsevier
In recent years, deep learning has revolutionized the field of machine learning, for computer
vision in particular. In this approach, a deep (multilayer) artificial neural network (ANN) is …
vision in particular. In this approach, a deep (multilayer) artificial neural network (ANN) is …
Spikingjelly: An open-source machine learning infrastructure platform for spike-based intelligence
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic
chips with high energy efficiency by introducing neural dynamics and spike properties. As …
chips with high energy efficiency by introducing neural dynamics and spike properties. As …
Incorporating learnable membrane time constant to enhance learning of spiking neural networks
Abstract Spiking Neural Networks (SNNs) have attracted enormous research interest due to
temporal information processing capability, low power consumption, and high biological …
temporal information processing capability, low power consumption, and high biological …
Slayer: Spike layer error reassignment in time
SB Shrestha, G Orchard - Advances in neural information …, 2018 - proceedings.neurips.cc
Abstract Configuring deep Spiking Neural Networks (SNNs) is an exciting research avenue
for low power spike event based computation. However, the spike generation function is non …
for low power spike event based computation. However, the spike generation function is non …
A review of learning in biologically plausible spiking neural networks
Artificial neural networks have been used as a powerful processing tool in various areas
such as pattern recognition, control, robotics, and bioinformatics. Their wide applicability has …
such as pattern recognition, control, robotics, and bioinformatics. Their wide applicability has …
Learning rules in spiking neural networks: A survey
Spiking neural networks (SNNs) are a promising energy-efficient alternative to artificial
neural networks (ANNs) due to their rich dynamics, capability to process spatiotemporal …
neural networks (ANNs) due to their rich dynamics, capability to process spatiotemporal …
Supervised learning in spiking neural networks: A review of algorithms and evaluations
X Wang, X Lin, X Dang - Neural Networks, 2020 - Elsevier
As a new brain-inspired computational model of the artificial neural network, a spiking
neural network encodes and processes neural information through precisely timed spike …
neural network encodes and processes neural information through precisely timed spike …
Clustering-based undersampling in class-imbalanced data
WC Lin, CF Tsai, YH Hu, JS Jhang - Information Sciences, 2017 - Elsevier
Class imbalance is often a problem in various real-world data sets, where one class (ie the
minority class) contains a small number of data points and the other (ie the majority class) …
minority class) contains a small number of data points and the other (ie the majority class) …
Hardware and software optimizations for accelerating deep neural networks: Survey of current trends, challenges, and the road ahead
Currently, Machine Learning (ML) is becoming ubiquitous in everyday life. Deep Learning
(DL) is already present in many applications ranging from computer vision for medicine to …
(DL) is already present in many applications ranging from computer vision for medicine to …