[HTML][HTML] Privacy-preserving artificial intelligence in healthcare: Techniques and applications

N Khalid, A Qayyum, M Bilal, A Al-Fuqaha… - Computers in Biology and …, 2023 - Elsevier
There has been an increasing interest in translating artificial intelligence (AI) research into
clinically-validated applications to improve the performance, capacity, and efficacy of …

Shifting machine learning for healthcare from development to deployment and from models to data

A Zhang, L **ng, J Zou, JC Wu - Nature Biomedical Engineering, 2022 - nature.com
In the past decade, the application of machine learning (ML) to healthcare has helped drive
the automation of physician tasks as well as enhancements in clinical capabilities and …

Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer

J Ogier du Terrail, A Leopold, C Joly, C Béguier… - Nature medicine, 2023 - nature.com
Triple-negative breast cancer (TNBC) is a rare cancer, characterized by high metastatic
potential and poor prognosis, and has limited treatment options. The current standard of …

Federated learning for healthcare: Systematic review and architecture proposal

RS Antunes, C André da Costa, A Küderle… - ACM Transactions on …, 2022 - dl.acm.org
The use of machine learning (ML) with electronic health records (EHR) is growing in
popularity as a means to extract knowledge that can improve the decision-making process in …

A review of applications in federated learning

L Li, Y Fan, M Tse, KY Lin - Computers & Industrial Engineering, 2020 - Elsevier
Federated Learning (FL) is a collaboratively decentralized privacy-preserving technology to
overcome challenges of data silos and data sensibility. Exactly what research is carrying the …

[HTML][HTML] The future of digital health with federated learning

N Rieke, J Hancox, W Li, F Milletari, HR Roth… - NPJ digital …, 2020 - nature.com
Data-driven machine learning (ML) has emerged as a promising approach for building
accurate and robust statistical models from medical data, which is collected in huge volumes …

Federated learning-based AI approaches in smart healthcare: concepts, taxonomies, challenges and open issues

A Rahman, MS Hossain, G Muhammad, D Kundu… - Cluster computing, 2023 - Springer
Abstract Federated Learning (FL), Artificial Intelligence (AI), and Explainable Artificial
Intelligence (XAI) are the most trending and exciting technology in the intelligent healthcare …

Federated learning for healthcare informatics

J Xu, BS Glicksberg, C Su, P Walker, J Bian… - Journal of healthcare …, 2021 - Springer
With the rapid development of computer software and hardware technologies, more and
more healthcare data are becoming readily available from clinical institutions, patients …

Homomorphic encryption-based privacy-preserving federated learning in IoT-enabled healthcare system

L Zhang, J Xu, P Vijayakumar… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
In this work, the federated learning mechanism is introduced into the deep learning of
medical models in Internet of Things (IoT)-based healthcare system. Cryptographic …

Federated learning for COVID-19 screening from Chest X-ray images

I Feki, S Ammar, Y Kessentini, K Muhammad - Applied Soft Computing, 2021 - Elsevier
Today, the whole world is facing a great medical disaster that affects the health and lives of
the people: the COVID-19 disease, colloquially known as the Corona virus. Deep learning is …