Autonomous driving system: A comprehensive survey

J Zhao, W Zhao, B Deng, Z Wang, F Zhang… - Expert Systems with …, 2024 - Elsevier
Automation is increasingly at the forefront of transportation research, with the potential to
bring fully autonomous vehicles to our roads in the coming years. This comprehensive …

Social interactions for autonomous driving: A review and perspectives

W Wang, L Wang, C Zhang, C Liu… - Foundations and Trends …, 2022 - nowpublishers.com
No human drives a car in a vacuum; she/he must negotiate with other road users to achieve
their goals in social traffic scenes. A rational human driver can interact with other road users …

Planning-oriented autonomous driving

Y Hu, J Yang, L Chen, K Li, C Sima… - Proceedings of the …, 2023 - openaccess.thecvf.com
Modern autonomous driving system is characterized as modular tasks in sequential order,
ie, perception, prediction, and planning. In order to perform a wide diversity of tasks and …

Query-centric trajectory prediction

Z Zhou, J Wang, YH Li… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Predicting the future trajectories of surrounding agents is essential for autonomous vehicles
to operate safely. This paper presents QCNet, a modeling framework toward pushing the …

Gpt-driver: Learning to drive with gpt

J Mao, Y Qian, J Ye, H Zhao, Y Wang - arxiv preprint arxiv:2310.01415, 2023 - arxiv.org
We present a simple yet effective approach that can transform the OpenAI GPT-3.5 model
into a reliable motion planner for autonomous vehicles. Motion planning is a core challenge …

Waymax: An accelerated, data-driven simulator for large-scale autonomous driving research

C Gulino, J Fu, W Luo, G Tucker… - Advances in …, 2023 - proceedings.neurips.cc
Simulation is an essential tool to develop and benchmark autonomous vehicle planning
software in a safe and cost-effective manner. However, realistic simulation requires accurate …

Motionlm: Multi-agent motion forecasting as language modeling

A Seff, B Cera, D Chen, M Ng, A Zhou… - Proceedings of the …, 2023 - openaccess.thecvf.com
Reliable forecasting of the future behavior of road agents is a critical component to safe
planning in autonomous vehicles. Here, we represent continuous trajectories as sequences …

Motion transformer with global intention localization and local movement refinement

S Shi, L Jiang, D Dai, B Schiele - Advances in Neural …, 2022 - proceedings.neurips.cc
Predicting multimodal future behavior of traffic participants is essential for robotic vehicles to
make safe decisions. Existing works explore to directly predict future trajectories based on …

Safety-enhanced autonomous driving using interpretable sensor fusion transformer

H Shao, L Wang, R Chen, H Li… - Conference on Robot …, 2023 - proceedings.mlr.press
Large-scale deployment of autonomous vehicles has been continually delayed due to safety
concerns. On the one hand, comprehensive scene understanding is indispensable, a lack of …

Transfuser: Imitation with transformer-based sensor fusion for autonomous driving

K Chitta, A Prakash, B Jaeger, Z Yu… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
How should we integrate representations from complementary sensors for autonomous
driving? Geometry-based fusion has shown promise for perception (eg, object detection …