Machine learning methods for small data challenges in molecular science

B Dou, Z Zhu, E Merkurjev, L Ke, L Chen… - Chemical …, 2023 - ACS Publications
Small data are often used in scientific and engineering research due to the presence of
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …

Machine learning for electrocatalyst and photocatalyst design and discovery

H Mai, TC Le, D Chen, DA Winkler… - Chemical …, 2022 - ACS Publications
Electrocatalysts and photocatalysts are key to a sustainable future, generating clean fuels,
reducing the impact of global warming, and providing solutions to environmental pollution …

Self-driving laboratories for chemistry and materials science

G Tom, SP Schmid, SG Baird, Y Cao, K Darvish… - Chemical …, 2024 - ACS Publications
Self-driving laboratories (SDLs) promise an accelerated application of the scientific method.
Through the automation of experimental workflows, along with autonomous experimental …

Theoretical modeling of electrochemical proton-coupled electron transfer

RE Warburton, AV Soudackov… - Chemical …, 2022 - ACS Publications
Proton-coupled electron transfer (PCET) plays an essential role in a wide range of
electrocatalytic processes. A vast array of theoretical and computational methods have been …

Carbon Dots for Electroluminescent Light‐Emitting Diodes: Recent Progress and Future Prospects

Y Shi, W Su, F Yuan, T Yuan, X Song, Y Han… - Advanced …, 2023 - Wiley Online Library
Carbon dots (CDs), as emerging carbon nanomaterials, have been regarded as promising
alternatives for electroluminescent light‐emitting diodes (LEDs) owing to their distinct …

Accurate global machine learning force fields for molecules with hundreds of atoms

S Chmiela, V Vassilev-Galindo, OT Unke… - Science …, 2023 - science.org
Global machine learning force fields, with the capacity to capture collective interactions in
molecular systems, now scale up to a few dozen atoms due to considerable growth of model …

SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects

OT Unke, S Chmiela, M Gastegger, KT Schütt… - Nature …, 2021 - nature.com
Abstract Machine-learned force fields combine the accuracy of ab initio methods with the
efficiency of conventional force fields. However, current machine-learned force fields …

Inverse design of 3d molecular structures with conditional generative neural networks

NWA Gebauer, M Gastegger, SSP Hessmann… - Nature …, 2022 - nature.com
The rational design of molecules with desired properties is a long-standing challenge in
chemistry. Generative neural networks have emerged as a powerful approach to sample …

The design space of E (3)-equivariant atom-centred interatomic potentials

I Batatia, S Batzner, DP Kovács, A Musaelian… - Nature Machine …, 2025 - nature.com
Molecular dynamics simulation is an important tool in computational materials science and
chemistry, and in the past decade it has been revolutionized by machine learning. This rapid …

A Euclidean transformer for fast and stable machine learned force fields

JT Frank, OT Unke, KR Müller, S Chmiela - Nature Communications, 2024 - nature.com
Recent years have seen vast progress in the development of machine learned force fields
(MLFFs) based on ab-initio reference calculations. Despite achieving low test errors, the …