Graph neural networks for materials science and chemistry

P Reiser, M Neubert, A Eberhard, L Torresi… - Communications …, 2022 - nature.com
Abstract Machine learning plays an increasingly important role in many areas of chemistry
and materials science, being used to predict materials properties, accelerate simulations …

Recent advances and applications of deep learning methods in materials science

K Choudhary, B DeCost, C Chen, A Jain… - npj Computational …, 2022 - nature.com
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …

Rethinking graph neural networks for anomaly detection

J Tang, J Li, Z Gao, J Li - International Conference on …, 2022 - proceedings.mlr.press
Abstract Graph Neural Networks (GNNs) are widely applied for graph anomaly detection. As
one of the key components for GNN design is to select a tailored spectral filter, we take the …

How attentive are graph attention networks?

S Brody, U Alon, E Yahav - arxiv preprint arxiv:2105.14491, 2021 - arxiv.org
Graph Attention Networks (GATs) are one of the most popular GNN architectures and are
considered as the state-of-the-art architecture for representation learning with graphs. In …

The transformational role of GPU computing and deep learning in drug discovery

M Pandey, M Fernandez, F Gentile, O Isayev… - Nature Machine …, 2022 - nature.com
Deep learning has disrupted nearly every field of research, including those of direct
importance to drug discovery, such as medicinal chemistry and pharmacology. This …

Rethinking graph transformers with spectral attention

D Kreuzer, D Beaini, W Hamilton… - Advances in …, 2021 - proceedings.neurips.cc
In recent years, the Transformer architecture has proven to be very successful in sequence
processing, but its application to other data structures, such as graphs, has remained limited …

A survey of graph neural networks for recommender systems: Challenges, methods, and directions

C Gao, Y Zheng, N Li, Y Li, Y Qin, J Piao… - ACM Transactions on …, 2023 - dl.acm.org
Recommender system is one of the most important information services on today's Internet.
Recently, graph neural networks have become the new state-of-the-art approach to …

Software and computing for Run 3 of the ATLAS experiment at the LHC

ATLAS Collaboration - European Physical Journal C, 2024 - research.birmingham.ac.uk
The ATLAS experiment has developed extensive software and distributed computing
systems for Run 3 of the LHC. These systems are described in detail, including software …

3d infomax improves gnns for molecular property prediction

H Stärk, D Beaini, G Corso, P Tossou… - International …, 2022 - proceedings.mlr.press
Molecular property prediction is one of the fastest-growing applications of deep learning with
critical real-world impacts. Although the 3D molecular graph structure is necessary for …

Combinatorial optimization and reasoning with graph neural networks

Q Cappart, D Chételat, EB Khalil, A Lodi… - Journal of Machine …, 2023 - jmlr.org
Combinatorial optimization is a well-established area in operations research and computer
science. Until recently, its methods have focused on solving problem instances in isolation …