Graph neural networks for materials science and chemistry
Abstract Machine learning plays an increasingly important role in many areas of chemistry
and materials science, being used to predict materials properties, accelerate simulations …
and materials science, being used to predict materials properties, accelerate simulations …
Recent advances and applications of deep learning methods in materials science
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
Rethinking graph neural networks for anomaly detection
Abstract Graph Neural Networks (GNNs) are widely applied for graph anomaly detection. As
one of the key components for GNN design is to select a tailored spectral filter, we take the …
one of the key components for GNN design is to select a tailored spectral filter, we take the …
How attentive are graph attention networks?
Graph Attention Networks (GATs) are one of the most popular GNN architectures and are
considered as the state-of-the-art architecture for representation learning with graphs. In …
considered as the state-of-the-art architecture for representation learning with graphs. In …
The transformational role of GPU computing and deep learning in drug discovery
Deep learning has disrupted nearly every field of research, including those of direct
importance to drug discovery, such as medicinal chemistry and pharmacology. This …
importance to drug discovery, such as medicinal chemistry and pharmacology. This …
Rethinking graph transformers with spectral attention
In recent years, the Transformer architecture has proven to be very successful in sequence
processing, but its application to other data structures, such as graphs, has remained limited …
processing, but its application to other data structures, such as graphs, has remained limited …
A survey of graph neural networks for recommender systems: Challenges, methods, and directions
Recommender system is one of the most important information services on today's Internet.
Recently, graph neural networks have become the new state-of-the-art approach to …
Recently, graph neural networks have become the new state-of-the-art approach to …
Software and computing for Run 3 of the ATLAS experiment at the LHC
ATLAS Collaboration - European Physical Journal C, 2024 - research.birmingham.ac.uk
The ATLAS experiment has developed extensive software and distributed computing
systems for Run 3 of the LHC. These systems are described in detail, including software …
systems for Run 3 of the LHC. These systems are described in detail, including software …
3d infomax improves gnns for molecular property prediction
Molecular property prediction is one of the fastest-growing applications of deep learning with
critical real-world impacts. Although the 3D molecular graph structure is necessary for …
critical real-world impacts. Although the 3D molecular graph structure is necessary for …
Combinatorial optimization and reasoning with graph neural networks
Combinatorial optimization is a well-established area in operations research and computer
science. Until recently, its methods have focused on solving problem instances in isolation …
science. Until recently, its methods have focused on solving problem instances in isolation …